

Overview of DFKI-RIC research topics, focused on space robotics

DFKI Bremen & University of Bremen Robotics Innovations Center Director: Prof. Dr. Frank Kirchner www.dfki.de/robotics robotics@dfki.de

DFKI-RIC Space Robotics

Hardware in the Loop Simulation Verification of Rendezvous and Capture

Maneuvers and Systems

DF

Summary

Day 1

- Summary of Rendezvous and Capture related developments at DFKI
- □ Hardware of the HIL movement simulation system
- □ Core of the attached simulation system
- Coordinate transformations for the control of the movement system
- **Day 2**
 - □ Avoiding HIL movement system self-collisions
 - Optimizing physical workspace usage
 - □ Measuring and improving movement system precision
 - □ Simulating and evolving alternative capturing systems
 - Processing optical sensor Data

•Summary of Rendezvous and Capture related developments at DFKI

Goals and Tasks

- Construction of a "Hardware in the Loop" simulator that can test real hardware (sensors like cameras and LIDAR) and software (navigation, image processing etc.) of a Servicer under realistic conditions
 - Simulation of the relative motion of up to two objects (Servicer and Client) in a workspace as large as possible
 - Transfer of the movement simulation results in realtime to the real mockups of the Client and Servicer, which are attached to a KUKA robotic arm and a cable robot.
- Camera hardware und camera data preprocessing

Development of new technologies for capturing satellites

Rendezvous and Capture related developments at DFKI

□ Advantages of "Hardware in the Loop" simulation:

The real sensors and real data processing hardware for sensor data and navigation can be tested according to a software simulation of the orbital dynamics

Problem to solve:

- Convert the unrestricted movements of two objects (2x6D => 12D) to the KUKA arm (6D, restricted) and the cable Robot (3-4D, restricted)
- ▶ 12D \Rightarrow 9-10D

Rendezvous and Capture related developments at DFKI

Exploration hall

Length 24mWidth 12mHeight 10m

Exploration hall

Lighting system

- Realistic optical sun light simulation from configurable directions
- 6 light sources with controllable pan-tilt units
- 5 elevators for changing the height auf the lights
- 575W / 6000K / 1000h / 49000lm
- Comparable to 2500W Daylight-lamp
- 14500 Lux at 10m/12°

- > Special light absorbing wall paint, so that only the mockups are visible
 - \Rightarrow More realistic visual sensor data

Exploration hall

Control room: Control Computers

- Security systems
 - Combined emergency stop for KUKA and cable-robot in the control room

- Security systems
 - Light curtains in danger zone

- Security systems
 - Laser filter film to protect glass windows of control room (LIDAR: 1550 nm (IR),

Robot arm: Client

Model	KR-60-3
DOF:	6
Lifting:	60kg
Control:	Remote Sensor Interface (RSI) via Ethernet
Control rate:	12ms
Accuracy (repeatability):	+/- 0.2mm by manufacturer, 0.01mm measured

Robot arm: Client

Universität Bremen

γ

Wire driven platform based on a SpiderCam custom design

Number of wires:	8
Number of winches:	4
Core workspace with high	6m x 4m x 4.50m (L x W x H)
accuracy:	
Repeatability in core workspace:	ca. 1.1mm
Extended workspace:	16m x 7m x 5.50m (L x W x H)
Minimal translational speed:	0.1 mm/s
Maximum translational speed:	2m/s
Maximum acceleration:	1.5m/s ²
Workload (constant):	150kg
Data transfer rate to mount:	10 GBit/s via glass fibre, switch on mount
Electric power on mount:	230V AC with1kW, 24V DC
Control:	CAN (bus system)
Control rate:	4ms

Z-axis of the cable robot

- Attachment:
 - On the upper end of the mount
 - Connected to inner axis
- Drive:
 - Faulhaber 3863-24V / 3,8A / 6700rpm / 110mNm
 - Gear 1: Planetary gear 12:1
 - Gear 2: Harmonic drive 120:1
 - Combined gear: 1440:1
 - Torque: 158Nm / 578Nm
 - Turning speed: 13s/360°

Sensors:

- Absolute senspr on drive axis: IC Haus ic-MH; 0.1° Resolution
- Incremental sensor on motor axis:
 32 steps per 360° cycle

VICON tracking system

VICON tracking system

Questions so far?

Core of the simulation system

"RvD"

Orbital dynamics, RCS, GNC

- Main part of simulation
 - Simulated aspects:
 - Orbital dynamics
 - Real "Hardware in the Loop" components:
 - Sensor data processing
 - Simulates behavior of two satellites
 - Returns new position and rotation of objects

- Visualizes simulated objects and environment
- Visualization can be used for verification of "RvD" and virtual sensors

- Transfers simulation state to the real mockups
- Calculates positions and rotations for KUKA and CableRobot
- \Rightarrow Solves 12D \Rightarrow 9D-10D problem
- Ensures safety borders

- Displays the state of the motion system graphically
- Monitoring of the movement system (also **before** it moves in reality)

"Graphics" Virtual display of the movement system KUKA arm and CableRobot 1 - each move one of the simulated objects

"RvD"

Sensordaten

Kameras / LIDAR / etc.

"Real" Control of movement system

Controls movement system

Orbital dynamics, RCS, GNC

(KUKA / CableRobot)

Provides real sensor data to "RvD"

Real-time system: dSPACE

All real-time applications run on the dSPACE system Advantages

- Hardware identical to Astrium simulation hardware
- Easily programmable using Matlab/Simulink
- Reliable and industry proven (car development)
- Many I/O boards available

Hardware:

- DS1006: 4-processor board
- DS4302: I/O board with 4 CAN channels

Each of the four cores has a particular task:

- Two cores were only used by Astrium (orbital dynamics and satellite control (GNC)) → Astrium provided compiled binaries.
- One core is used by DFKI to solve the $12D \Rightarrow 9D-10D$ transformation and to control the hardware in der hall.
- A third core used by DFKI verwendeten runs Linux and controls the Ethernet interfaces. It exchanges data with the other DFKI core using the shared memory.
- The interfaces between the cores are defined in a Simulink model.

Control of KUKA via dSpace

RSI-Protocol

- KUKA sends the position of the robot and an ID number in an XML text every 12ms
- The other side, an application in the Linux core of the dSpace system must immediately reply with a correction and the ID number

CableRobot control via dSPACE

- CAN-Bus
- 4 ms rate
- 12 ms delay between command and sensor reply
- Transformation between CableRobot coordinate system and world coordinate system necessary
- Position control

Z axis of CableRobot - control

DF

Control:

- H-Bridge (often used in DFKI RIC, e.g. iMoby)
- STM32 microcontroller for a positionspeed cascade controller
- CAN interface

Connection:

- CAN to Ethernet bridge to the control room
- Connection to the dSPACE system
- Network connection via CableRobot glass fiber in private network
- QoS settings can be changed if problems occur

Motion tracking system - control

- Exact position measurement of objects in workspace
- Ethernet TCP/IP
- 4 ms to 12 ms rate
- Source of world coordinate system

Visualizations

During the simulation the following visualizations can be used:

- Simulation of the hall with MARS
- Simulation of the satellites in space with MARS
- Simulation of the satellites in space with the Astrium viewer
- Camera images of the exploration hall
- These systems are connected in real-time via Ethernet

3D visualization via MARS

- The hall and the satellites in space are displayed in MARS in real-time
- In a second window the servicer camera can be simulated
- The connection is done via Ethernet (one port number per view)
- The data is sent every 40ms as standard C strings

Visualization of the exploration hall

Visualization of the satellites in space

Astrium viewer

- The visualization software from Astrium runs in sync with the movement simulation system
- The data (time, position of the satellites, speed, orientation) is sent viea Ethernet every 40 ms as strings
- The camera on the servicer can also be simulated in a second window

Real camera images

- The real camera images are transferred via the glass fibers in the wires of the CableRobot (using Ethernet)

Questions so far?

□ Next topic

Coordinate transformations (12D⇒9-10D)

Reduction of DOF and Coordinate transformations

Reduction of DOF and Coordinate transformations

Reduction of DOF and Coordinate transformations

Simulated and real images in comparison

Questions so far?

□ Maximum use of workspace

- > A2/A3 automatic
 - For 12D/6D KUKA 3D
 - Increases vertical workspace of the CableRobot
- A4/A6 automatic
 - For 12D/6D KUKA 3D
 - Delays the necessity to manually reconfigure the HILsimulation, e.g. when doing tumbling Client motions
 - Z axis control
 - Increases maximum approach distance by using the diagonal of the workspace
 - Enables compensating unwanted rotations of the CableRobot

Detection of possible collisions

- Servicer environment
- Client environment
- Client Servicer
- Client– KUKA

□ A2/A3 automatic

□ A2/A3 automatic

Increases vertical workspace of the CableRobot

DF

□ A4/A6 Automatik

Delays the necessity to manually reconfigure the HIL-simulation, e.g. when doing tumbling Client motions

Z axis control

- Increases approach distance
- Reduces necessary movement of CableRobot

Detection of possible collisions

- Simplifies the complex CAD data to convex hulls
 - Low loss in precision
 - Enables collision detection in realtime
- Send current KUKA angles and CableRobot position via TCP/IP
- Calculate the positions of all volumes
- Calculate the minimal distance between all volumes
- Return minimal distance and the involved objects
- Stop all movements if necessary
- Different thresholds possible formanual and automatic control
- Timeout monitoring for safety

Questions so far?

Possible error sources

□ Measurement of repeatability and absolute accuracy

	Absolute accuracy	Repeatability
KUKA without correction	1.6 mm	0.01 mm
CableRobot without correction	$267.4\mathrm{mm}$	1.1 mm
MTS without correction	19,5 mm	0.6 mm

□ Resulting accuracy

□ Visual position error

□ Improvements to the motion tracking system

- Changed the calibration object
- Manufactured a new coordinate origin setup
- Using bigger markers
- Bought additional camara with 16 times the resolution
- Optimized camera positions and directions
- Using more markers

Calculating correction polynomials

- Calibration trajectory
- Laser Tracker as reference measurement device

Calculation of correction polynomials

Plane z=3,95m

	Absolute accuracy	Repeatability
KUKA without correction	$1.6\mathrm{mm}$	$0.01\mathrm{mm}$
CableRobot without correction	$267.4\mathrm{mm}$	$1.1\mathrm{mm}$
CableRobot with correction	$6.6\mathrm{mm}$	1.1 mm
MTS without correction	$8.9\mathrm{mm}$	$0.6\mathrm{mm}$
MTS with correction	$5.3\mathrm{mm}$	$0.6\mathrm{mm}$

D Rotation compensation

Takes filtered rotation values from CableRobot and uses it as additional parameter for the DOF reduction

□ Integrating the MTS into the control loop

- Necessary as installation deforms
- Sensor fusion necessary
 - Pose of CableRobot
 - Pose from correction polynomial
- Kalman-Filter
 - Trust in measurements according to quality
 - Median pre-filtering

□ Resulting accuracy

Final experiments

Qualitative comparison between LIDAR and ground truth

Questions so far?

Alternative capturing systems

Octopus arms

- □ Several joints per arm
- Arms can wrap around different objects (satellites)

□ One big gripper

- **Only one joint on the servicer**
- In the gripper flexible structures similar to the flexible DLR wheels could be used to adapt to objects

□ Swarm of service-vehicles

- □ The vehicles can dock to defined spots on the satellite and apply thrust forces.
- **Concept needs swarm control.**

Gripper structures using Fin Ray effect

- □ The Fin Ray effect causes the gripper to passively close around an object by a contact on the inner side.
- □ This concept could be combined with the other concepts.

□ Stickybot

- □ Using Van-Der-Waals forces contact is established on a microscopic level.
- **Enables gripping on flat surfaces.**

Parameters for optimization:

- **1.** Number of elements
- 2. Length of first element
- 3. Radius of first element
- 4. Speed of first axis of first joint
- 5. Speed of second axis of first joint

- 6. Factor for the lengths
- 7. Factor for the radius
- 8. Factor for the speed of the first axis
- 9. Factor for the speed of the second axis
- **10.** Number of not-used joints

DF

Setup:

- **1.** The arm is created in simulation.
- 2. The evaluation is aborted if the arm does not reach the box.
- **3.** The joints are activated for eight simulated minutes.
- 4. Then, eight further minutes a force is applied to the box.
- 5. The evaluation is based on the distance of the box to its starting point and the sum of all collision forces between arm and box.

- **70** independent optimizations done
- Evaluation of 448.000 parameter configurations.
- **Classification of the results using Growing Cell Structures.**
- **Divided the 70 results into 12 Classes.**
- The three classes with the most results all represent a similar solution, where the arm does not wrap around the box but holds the box with the tip of the arm.
- □ These solutions additionally received the best average ratings.

One of the best solutions for the arm optimization:

Other examples for solutions:

Structure optimization:

Questions so far?

- Overview camera
- □ Stereo camera System
- Data processing node
- □ Preprocessing

□ Results

Overview camera

- Used for monitoring
- Prosilica GX 3300
 - 3296x2472 (8 MP) @ 17 FPS
 - Controlled like the stereo camera system
- Nikkor Fisheye lens
 - 10,5 mm focal length
 - Opening angle of +/-55 °

□ Stereo camera system

- Based on the DEOS specification
- > 2 cameras, classic stereo configuration
- > 36,4 cm baseline
- Image area 0.5 m 17 m
- GE1900 Gigabit Ethernet cameras
 - Lens with 12.5 mm focal length
 - Opening Angle of + / -17 °
 - Native resolution of 1920x1080 (HDTV)
 - Used resolution 1024x1024 (ROI)
 - Up to 30 frames / sec at full resolution
 - monochrome
 - High sensitivity
 - Hardware-synchronized

Image processing node

- Camera system with dedicated data lines
- Uplink line for transmitting the pre-processed data
- Compact, high-performance PC
 - Four processor cores
 - SSD drives
 - Consistent x64 architecture
 - A total of approximately 50 W power
 - 17x17x5 cm space usage

- □ Preprocessing steps
 - Acquiring image
 - Distortion correction
 - Rectification

Camera systems and data preprocessing Preprocessing steps ➢ Filter Average Binary image Gaussian

Median

Camera systems and data preprocessing Preprocessing steps Feature detection Blobs Source image Harris SURF

- **Preprocessing steps**
 - > 3D point clouds
 - Partial disparity
 - Triangulation
 - 200 ms computing time

Thanks for your attention Questions?

Thank you!

DFKI Bremen & Universität Bremen Robotics Innovations Center Director: Prof. Dr. Frank Kirchner www.dfki.de/robotics robotics@dfki.de

