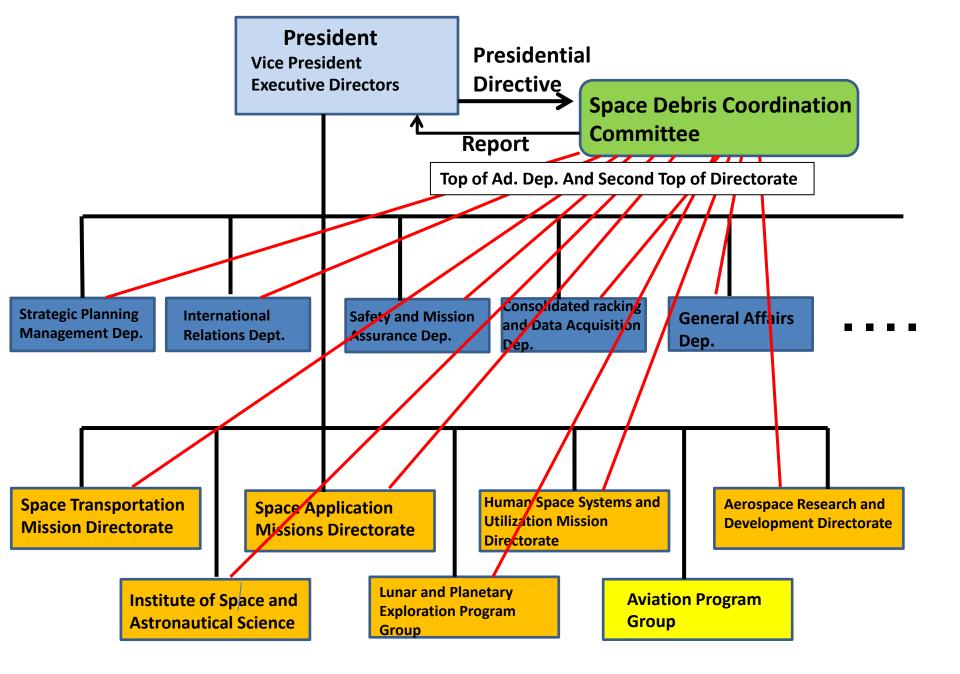


JAXA's Space Debris Related Activities : Mitigation, R&D

Prof. Seishiro KIBE Innovative Technology Research Center ARD/JAXA


Contents

- 1. Organizational Scheme of JAXA's Space Debris Related Activity,
- 2. Debris Related R & D Activities in JAXA
- 3. JAXA's Space Debris Mitigation Activity,
- 4. Comparison with Other Major Standards,

1. Organizational Scheme of JAXA's Space Debris Related Activity(1)

- Space Debris Coordination Committee
 - Organized by President's directive(No.18-11) in 2006,
 - Composition: Second top level representatives of each directorate and directors of related administrative departments,
 - Mandates
 - Promotion and coordination of Space Debris related activities in JAXA,
 - Coordination with domestic and international debris related organizations, such as Government of Japan, IADC, UN and ISO,
 - Planning, Coordination, budget allocation and Evaluation of Space Debris related R & D activities in JAXA.

1. Organizational Scheme of JAXA's Space Debris Related Activity(2)

JAXA's Document System on Space Debris

- JAXA's Strategic Plan on Space Debris(GEH-08002)

The strategy described in this document is incorporated in the following documents at each administration level.

> JAXA General Operation Plan(Short term operation plan)

Directorate Operation Plan

R & D Control Document

JAXA's Technology Road Map (Long term technological goals and plans)

- Mission assurance against Space Debris Technology RM
- Debris Mitigation Technology RM
- ➢Ground Safety Assurance Technology RM

2. Debris Related R&D Activity in JAXA (1)

"JAXA's Strategic Plan on Space Debris(GEH-08002)" establishes four strategic goals and sets several specific R&D issues for each goal,

• <u>Strategic Goal 1</u>

Assure mission success by reasonable and practical countermeasures depending on importance of the mission.

• <u>Strategic Goal 2</u>

Suppress generation of new debris at some reasonable level with a good balance of cost and reliability to ensure sustainable space development and utilization activity.

• <u>Strategic Goal 3</u>

Assure the ground safety in reentry process of space systems.

• Strategic Goal 4

Develop cost-effective enabling technologies for ADR operation and to pursue implementation of a practical ADR system through the framework of international cooperation.

2. Debris Related R&D Activity in JAXA (2)

• <u>Strategic Goal 1</u>

Assure mission success by reasonable and practical countermeasures depending on importance of the mission

- Specific R&D issues
 - Debris environment evolution model
 - Collision avoidance
 - Ground based debris observation
 - On orbit debris observation
 - Space system protection
 - Micro Meteoroid and Debris Impact Detector

List of evolutional models available

- ASI/<u>Space Debris Mitigation long-term analysis program</u> (SDM)
- ESA/<u>D</u>ebris <u>Environment Long-Term Analysis Software</u> (DELTA)
- ISRO/Long-term debris environment projection model(KSCPROP)
- JAXA-Kyushu Univ./<u>LEO</u> Long-Term <u>Debris</u> <u>Environment</u>
 <u>Evolution</u> <u>Model</u> (LEODEEM)
- NASA/LEO-to-GEO Environment Debris Model (LEGEND)
- UKSA-Univ. of Southampton/<u>D</u>ebris <u>A</u>nalysis and <u>M</u>onitoring <u>A</u>rchitecture the <u>G</u>eosynchronous <u>E</u>nvironment(DAMAGE)

Using LEODEEM, JAXA is actively contributing to international study activities, such as IADC and IAA.

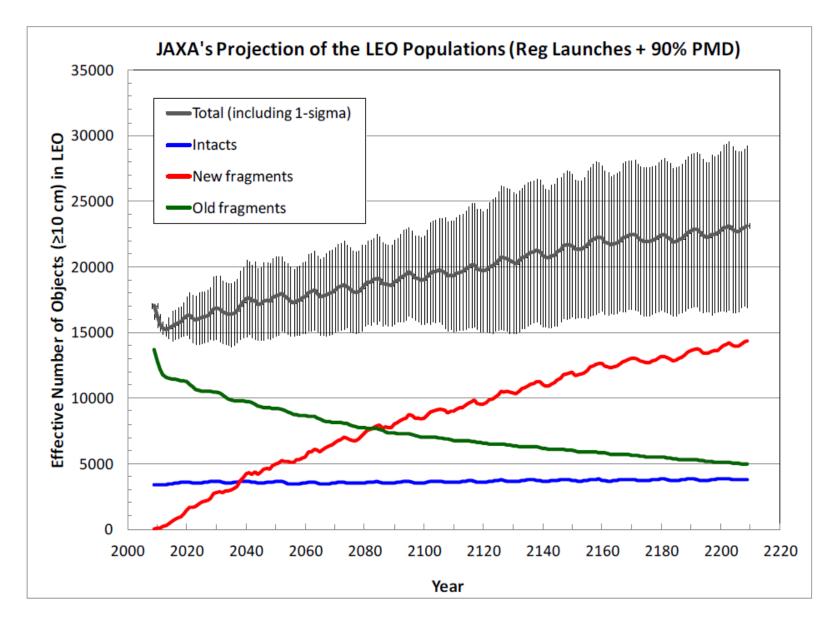


Figure 9. JAXA's projection of the future LEO population.

IADC AI27.1, 2013

2. Debris Related R&D Activity in JAXA (2)

• <u>Strategic Goal 1</u>

Assure mission success by reasonable and practical countermeasures corresponding to importance of the mission

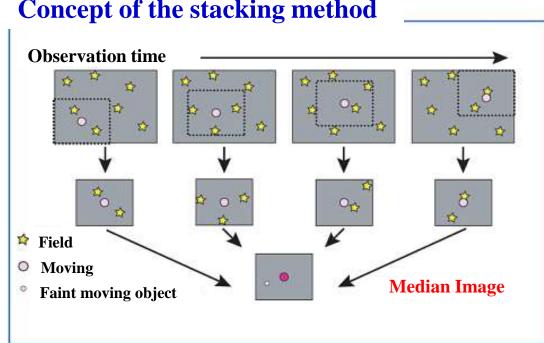
• Specific R&D issues

- Debris environment evolution model
- Collision avoidance
- Ground based debris observation
- On orbit debris observation
- Space system protection
- Micro Meteoroid and Debris Impact Detector

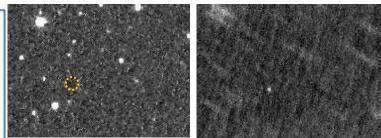
Ground based debris observation

Japan, as well as other countries, is owing to the US observation capability (SSN) very much. JAXA's contribution in this field is limited but very unique.

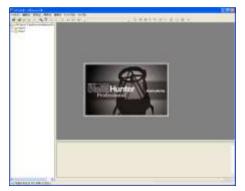
- R&D on Optical Observation technology using "Nyukasa" optical observational facility.
 - "Stacking method" for GEO observation,
 - Application of optical observation technology in LEO debris observation.
- Cataloging Efforts
 - Observation and data logging using "Bisei" optical observatory and "Kamisaibara" radar observatory, basically based on TLE information.


Optical Observational Facility of JAXA at Mt. Nyukasa

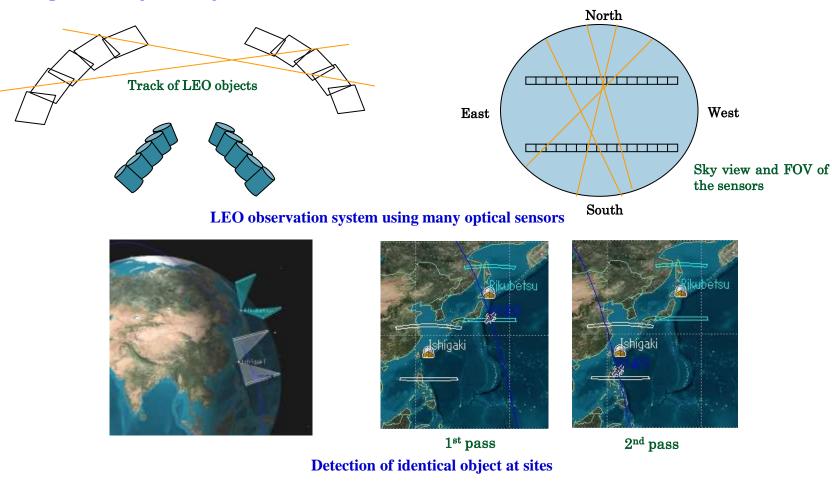
Overview of the facility


Data analysis process I : Stacking method

The stacking method uses multiple CCD images to detect very faint objects that are undetectable on a single CCD image.



Sub-images are cropped from many CCD images to follow the presumed movement of moving objects. Faint objects are detectable by making the median image of these sub-images.


Many asteroids were discovered by the method.

A faint object detect with the stacking method. One CCD image (left) and the stacked image (right).

Stellar Hunter Professional: Commercial software for discovering asteroids and comets.

Large array of optical sensors for LEO debris observation

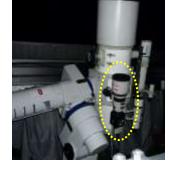
•Many optical observation units are installed to cover large area since each unit has narrow FOV. In order to get long arc for accurate orbit determination, 2 narrow rectangular regions which separate about 80-degree are observed using 40 observation units.

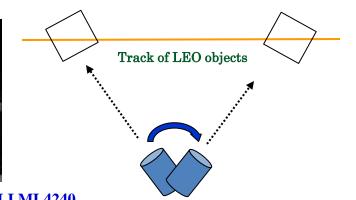
• Observation of 2 consecutive passes enable us to do accurate orbit determination. For this reason, 2 longitudinally separated sites are considered.

Test observation

Observation sites :

Ishigakijima Morita Observatory (Okinawa)


Observation equipments:


Canon 200mm F2 + FLI ML23042

Rikubetsu Observatory (Hokkaido)

Canon 300mm F2.8 + FLI ML4240

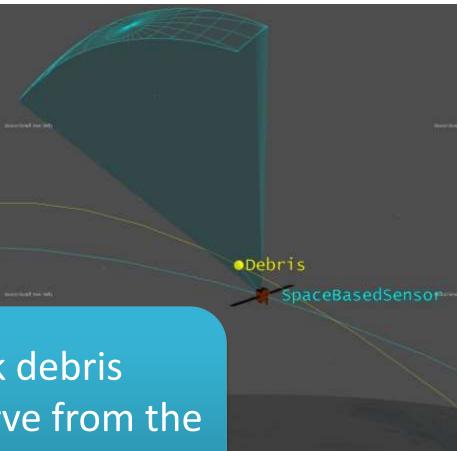
Observation date and time: Jul/27-28/2012 after dusk and before dawn

Targets : 4 TLE-objects (14521, 13589, 20720, 21574)

In order to mimic the observation using the optical array system described before, some TLE-objects were observed assuming one of the sensor of the system detects those objects with no TLE information. Each object was observed at 2 separate sky regions on each site. The first day's data was used for orbit determination and the second day's was for evaluation of the accuracy of the orbit determination.

2. Debris Related R&D Activity in JAXA (2)

• <u>Strategic Goal 1</u>


Assure mission success by reasonable and practical countermeasures corresponding to importance of the mission

• Specific R&D issues

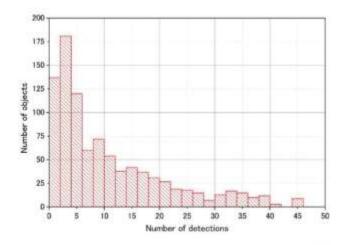
- Debris environment evolution model
- Collision avoidance
- Ground based debris observation
- On orbit debris observation
- Space system protection
- Micro Meteoroid and Debris Impact Detector

Space-Based Observation

Why space-based ?
 ✓ No atmospheric extinction
 ✓ No visible time constraint
 ✓ No geographical limit
 ✓ Flexible operation scenario
 ✓ Higher sensitivity

Enable to detect and track debris which is too faint to observe from the surface (i.e. smaller than 10 cm)

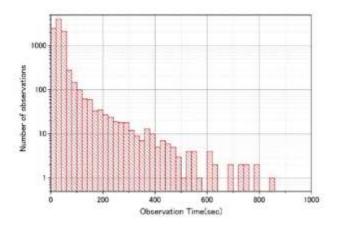
Catalog efficiency analyses


Simulation conditions

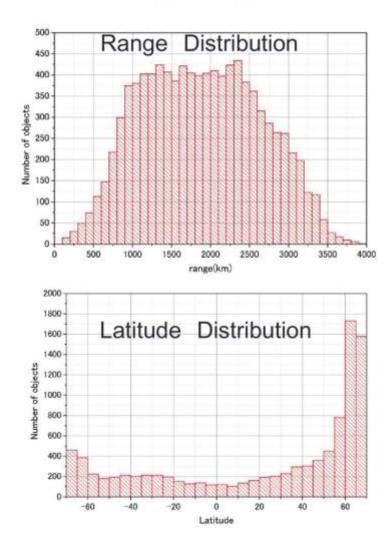
Satellite: sun-synchronous orbits in the vicinity of in the day-night trminator and the line of sight directed anti-solar. 600 km altitude. Objects: 600 to 800 km altitude, eccentricity 0.002 choosing 967 objects Period: 01/15/2013 ~ 01/25/2013 Optical sensor : 15.8 ° × 15.8 ° FOV

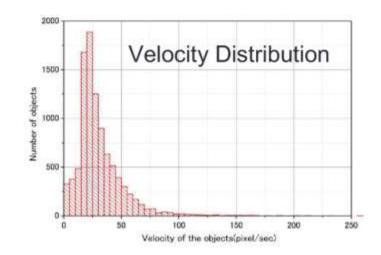
Exposure time 1sec

To count up newly detected objects in the CCD.

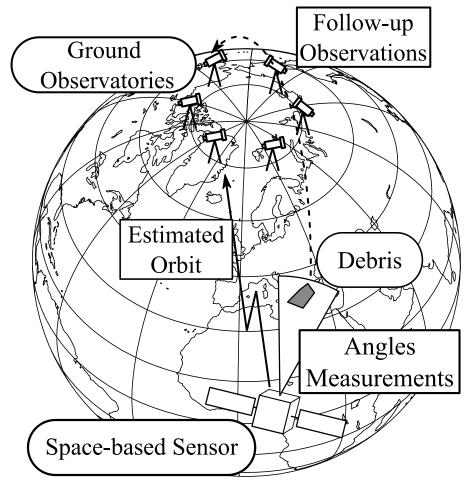

Result(1/2)

Detection objects in the number of in different times


Detection time	Number of objects	Percentage		
1day	585	60.5%		
2days	792	81.9% 88.4%		
3days	855			
4days	883	91.3%		
10days	937	96.9%		


Number of detections of three days from 2013/01/15. 315 (32.6%)individual objects can be observed continuously for 3 days.

Observation time of object(3 days)



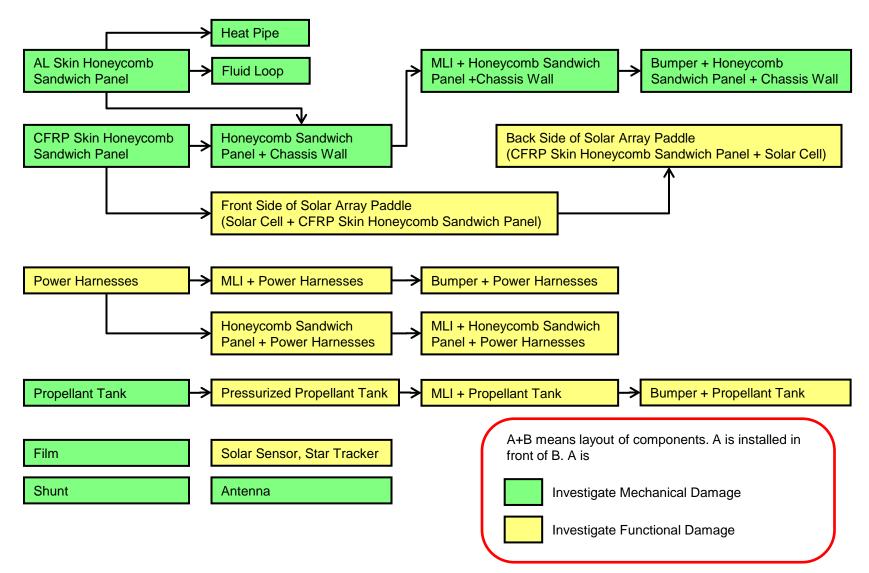
Space-Based Observation : Current Issue

- A space-based sensor is not a silver bullet
 - ✓ Good for detect (high sensitivity)
 - ✓ Bad for tracking (low obs. frequency)

A sensitive and frequent observation system is required to achieve the final goal

One of the solutions is a collaborative observation system illustrated in right figure

2. Debris Related R&D Activity in JAXA (2)


• Strategic Goal 1

Assure mission success by reasonable and practical countermeasures corresponding to importance of the mission

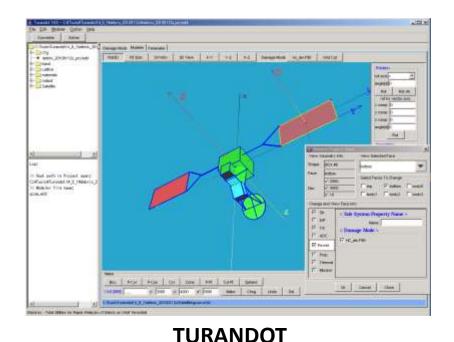
• Specific R&D issues

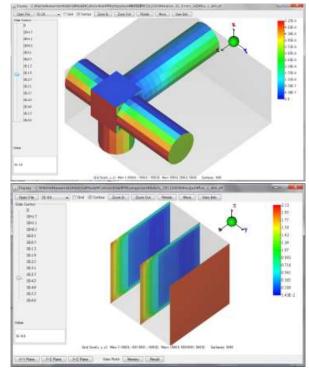
- Debris environment evolution model
- Collision avoidance
- Ground based debris observation
- On orbit debris observation
- Space system protection
- Micro Meteoroid and Debris Impact Detector

Spacecraft Components Required Debris Impact Data

Database

- Database for hypervelocity impact experiment and hydrocode simulation results
- Interoperability with other organization's database should be pursued through international framework such as IADC.


テプリ集束統	展テータへー	2											HC213	
P1\$ ~A	1													ġ
快乐条件					11.000			120-20		111				
カテ:50			成羽体化物	2	16	期後近任	*	2.0 - 3.0		*	Immi	1000		
Structure P CFRP			SUS AL				0		\sim			Y	R.R.	1
					液	2.8.0		1		-		N		80
		19					6		12		(km/s)		Utest	
			标用非形式		0.02	ATAR		-	1.	Sr-	(real)	•	Laboration	
			aphere		1.1			-		-		進決共成の定義		
		- 23	cylinder		16	史工ネル-ギー		_	-	all	14			
					*	-9-F棟(83							
1.20 m														
0.030	HIRITICALS Lines	-	-	Million A	BRAR Intel	KRIH-			3	18595		tipe	1-148	1
CFRP	2.3	Alumsinia m 03 mil	ophere	4.058	0.0	142.32						Two-stage Ligh Case Gut	84 [22]	ł
CERP.	23	Aluminu m 99.0%	ophere	3.671	0.0	115.8						Two-otage Ligh I Gas Gun	10 B	1
Chath.	2.3	Atuminisi m 99.5%	aptvere	3,791	20.0	123.8						Two-stage Ligh t Gas Gun	80.18	1
SERF.	2.3	Auminiu m 93.5%	ophere	2.025	0.0	35,27						Two stage Ligh I Gas Gun	M 22	ł
yerre	2.3	Aluminiu m B9.5%	aphere	1813	0.0	28.27						Two-stage Ligh KGas Gun	80 J.S	1
anth	23	Auminu m 09.5%	aphore	2.064	0.0	31.64						Two-stage Ligh t Gas Gun	84 18	1
9RP	2.3	Aluminiu m 93.5%	ophore	5.0.98	0.0	216.05						Two-stage Ligh I Gae Guit	55 48	1
OFRE	23	Atuminia m 99.5%	sphale	4.098	0.5	214.82						Two-stage Ligh KGas Gun	M 18	



Simple view (in Japanese) and Detail view (in English) are implemented

Collision risk analysis tool "TURANDOT"

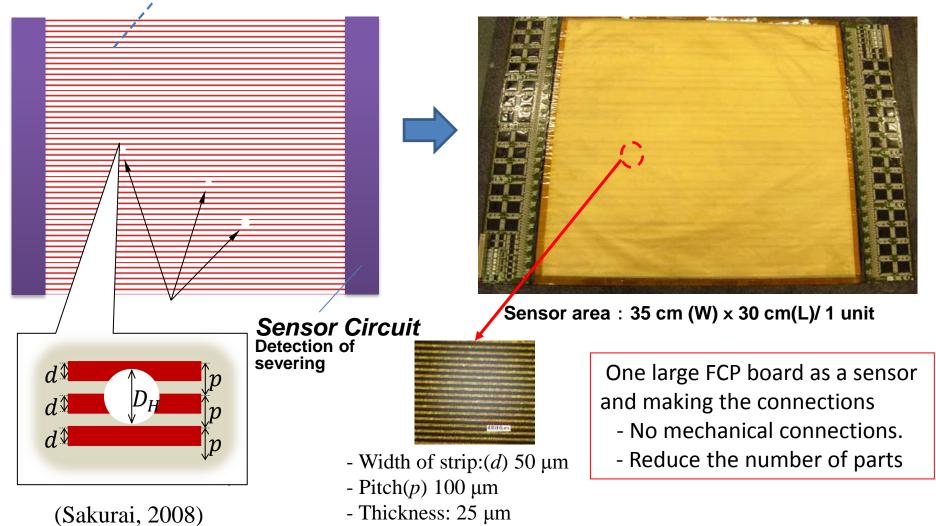
 Debris impact probability on each surface of a space system can be analyzed using the system configuration model and debris environment engineering models, such as MASTER and ORDM.

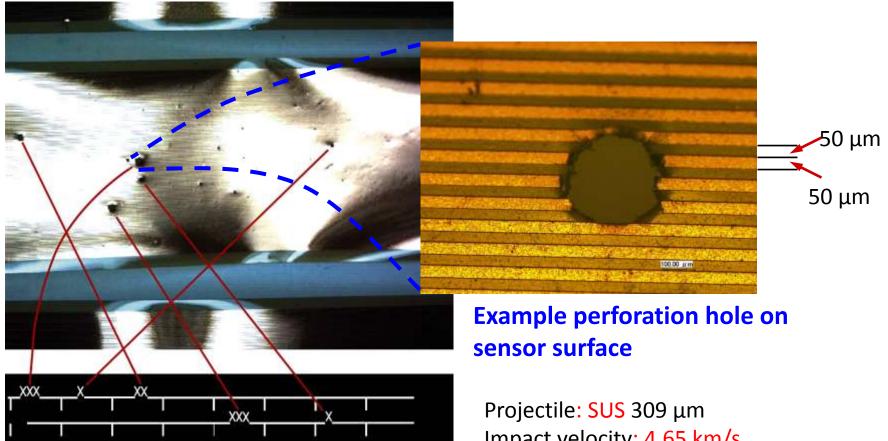
Benchmark test models (IADC)

2. Debris Related R&D Activity in JAXA (2)

• <u>Strategic Goal 1</u>

Assure mission success by reasonable and practical countermeasures corresponding to importance of the mission

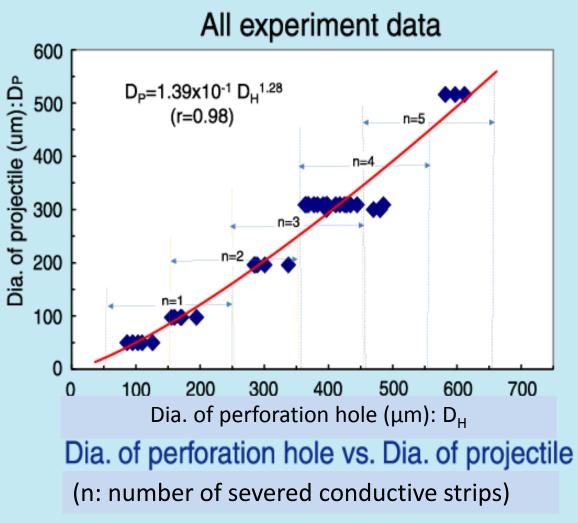

• Specific R&D issues


- Debris environment evolution model
- Collision avoidance
- Ground based debris observation
- On orbit debris observation
- Space system protection

Micro Meteoroid and Debris Impact Detector

Sensor Concept and EM (Engineering Model)

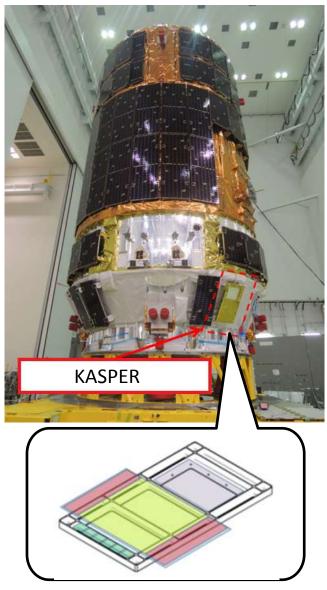
Sensor surface: Multitude of thin conductive strips are formed with fine pitch on a thin polyimide film



Signals of perforation holes

Impact velocity: 4.65 km/s

Example correspondence between signal and perforation hole



 $D_{H(Maximum)} = np + d + p$ $D_{H(Minimum)} = np + d - p$

D_H: dia. of perforation hole
n: number of severed strips
d: width of conductive strips
p: pitch of conductive strips

Flight experiment on HTV

- HTV (H-II Transfer Vehicle) called "KOUNOTORI"
 - JAXA's unmanned cargo transfer spacecraft which delivers supplies to the International Space Station (ISS).
- KASPER (KOUNOTORI Advanced Space Environment Research Equipment)
 - <u>Space Debris Monitor</u> + Charging Monitor
 - On the propulsion module of HTV-5 launched in 2014
 - Mission duration: 1-2 months
- To demonstrate the sensor's functional capability in space environment.
 - Housing and controller of the debris sensor are developed.

2. Debris Related R&D Activity in JAXA (3)

<u>Strategic Goal 2</u>

Suppress generation of new debris at some reasonable level with a good balance of cost and reliability to ensure sustainable space development and utilization activity

<u>Specific R&D Issues</u>

- Maintain and update JAXA's Debris Mitigation Standard
- Contribution to ISO standardization activity
- Active participation in IADC
- Enhance understanding in the industrial sector
- Issue debris related specification of JAXA
- Related R&D

Debris Mitigation Standard Support Tools "DEMIST Ver. 0.6"

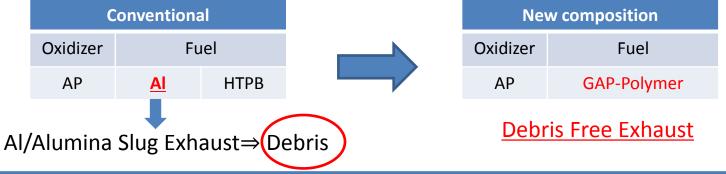
 Easily check compatibility of mission and system design with JAXA's debris mitigation standard (JMR003) at early stage of a project.

The second secon			
LARE .			
A RAD BOAT BAL	2004 10 (-)		
	新公単 <u>0</u> (-) 再交換合理 0 im		
	ILF-LANKS MAD		
-gent			
RALLER.			
大型デスリンス研究研究部分	10403/025		
10177027800000	DEbris		
(199666)	MItigation Standard Support		
8.22A-468			
	Tools		
78-01-0899469	1		
回避大河-112周期1668			
病因入7月~/16萬世紀時代			
BRIEL ME	ver. 0.6		
mananal			
JOSEW H			
Datase E-Renzeh	eT.		

與人名希斯					1.6
44 (1 10 18	2	en(24-	anna an		1142
50 201 201 201	100		. 10 100	21 144772 800 110008 800 18008 800 18008	010800
		2 1. P			
128	1	計算第11	(85.5	<u>.</u>	
112.2	108.187	NORMAL D	#世子林田(八)		1.0
(%) (#1) (0)	謂	11:30 13	170-00 (A)		
ŧ			1099-000 IA1		

2. Debris Related R&D Activity in JAXA (3)

• <u>Strategic Goal 2</u>


Suppress generation of new debris at some reasonable level with a good balance of cost and reliability to ensure sustainable space development and utilization activity

<u>Specific R&D Issues</u>

- Maintain and update JAXA's Debris Mitigation Standard
- Contribution to ISO standardization activity
- Active participation in IADC
- Enhance understanding in the industrial sector
- Issue debris related specification of JAXA
- Related R&D

Metal-free composite solid propellant

- Metal fuel (Al) in composite solid propellant generates Al/Alumina slug (Space Debris).
- Isp of Metal free solid propellant is insufficiency for solid propulsion system.
- GAP polymer is one of the candidate for the energetic propellant binder to enhance Isp.
- Isp loss of the new composition (metal free-GAP/AP) is within 8 %.

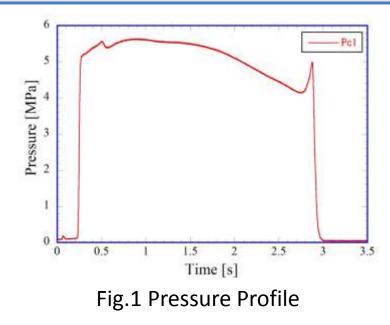


Fig.2 Static Firing test

Ж

AP: Ammonium perchlorate HTPB: Hydroxy-terminated polybutadiene GAP: Glycidyl-Azide polymer

2. Debris Related R&D Activity in JAXA (4)

• <u>Strategic Goal 3</u>

Assure the ground safety in reentry operation of space systems

<u>Specific R&D Issues</u>

- Improvement of the assessment tool (ORSAT-J) for ground safety through reentry operation
- Observation of reentering risk objects
- R&D for reduction of risk on ground

Reentry Melting Promotion Type Propellant tank

In order to reduce the casualty risk on ground, JAXA is developing the easy melting propellant tank for satellite below, made of CFRP with aluminum liner.

Parameters	Requirements
MEOP	2.76MPa
proof pressure	3.45MPa
burst pressure	4.14MPa
temperature range	5~60°C
total volume	0.35m ³
propellant	hydrazine (N ₂ H ₄)
other fluid	He, H ₂ O, IPA, N ₂
external leakage	≤1.013×10 ⁻⁷ Pa m³/s @MEOP,He
pressurization cycle	MEOP:>20, Burst:>5
expulsion Efficiency	<u>≥</u> 99.5%
mass	≤20.0kg
on orbit life	≥5years(target:≥15years)

Table 1 Tank specifications

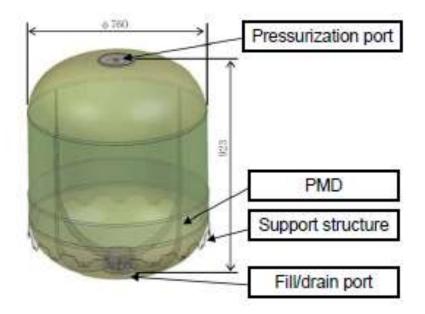


Fig. 1 Configuration

2. Debris Related R&D Activity in JAXA (5)

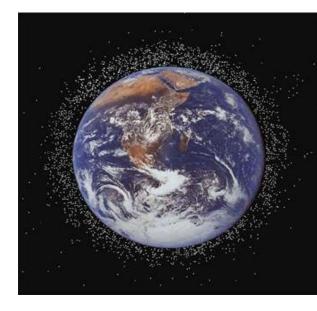
• <u>Strategic Goal 4</u>

Develop enabling cost-effective technologies for ADR operation and to pursue actual implementation of a practical ADR system through the framework of international cooperation.

<u>Specific R&D Issues</u>

ADR(Details will be given in another lecture on ADR)

3. JAXA's Space Debris Mitigation Activity (1)

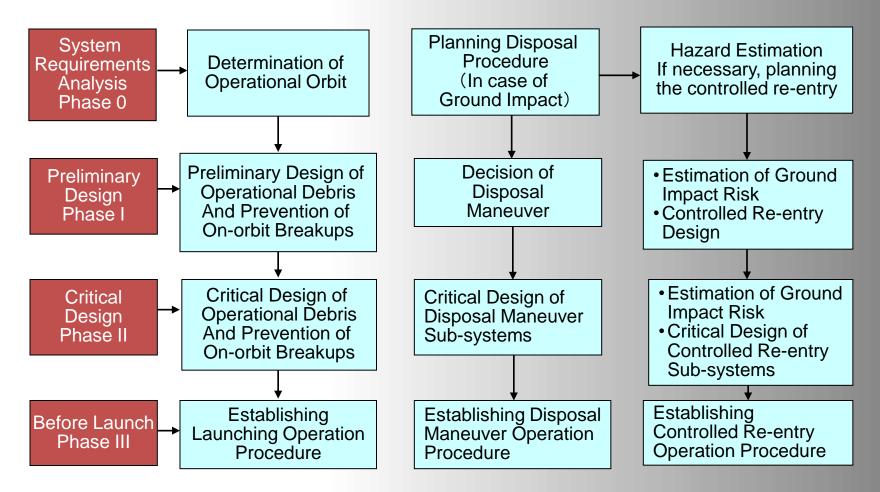

- Document system on Debris Mitigation
 - Debris Mitigation Standard (JMR003B)
 - Space Debris Mitigation Support Document (CAA-110029)
 - Space Debris Protection Manual (JERG-2-144HB001)
 - Rocket Design and Operation Manual (under discussion)
 - Spacecraft Design and Operation Manual (CAA-111003)

3. JAXA's Space Debris Mitigation Activity (2)

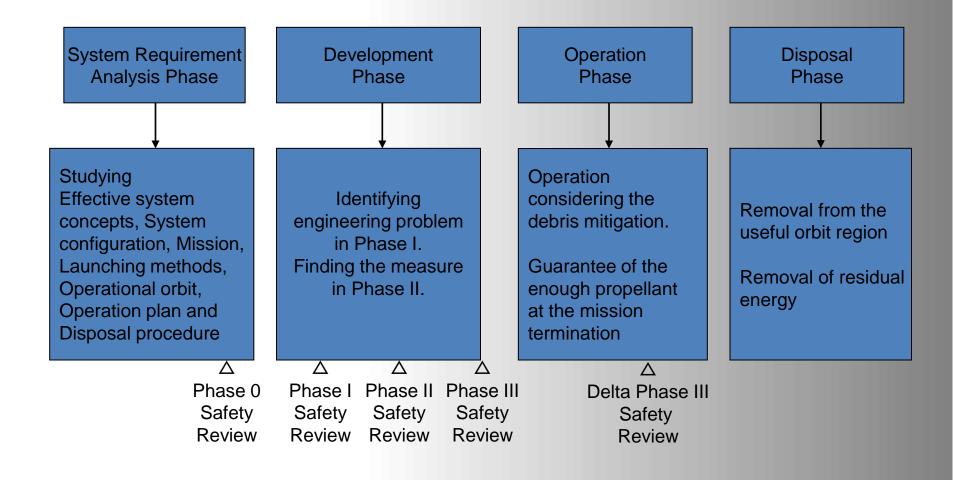
Space Debris Mitigation Standard (JMR-003B)

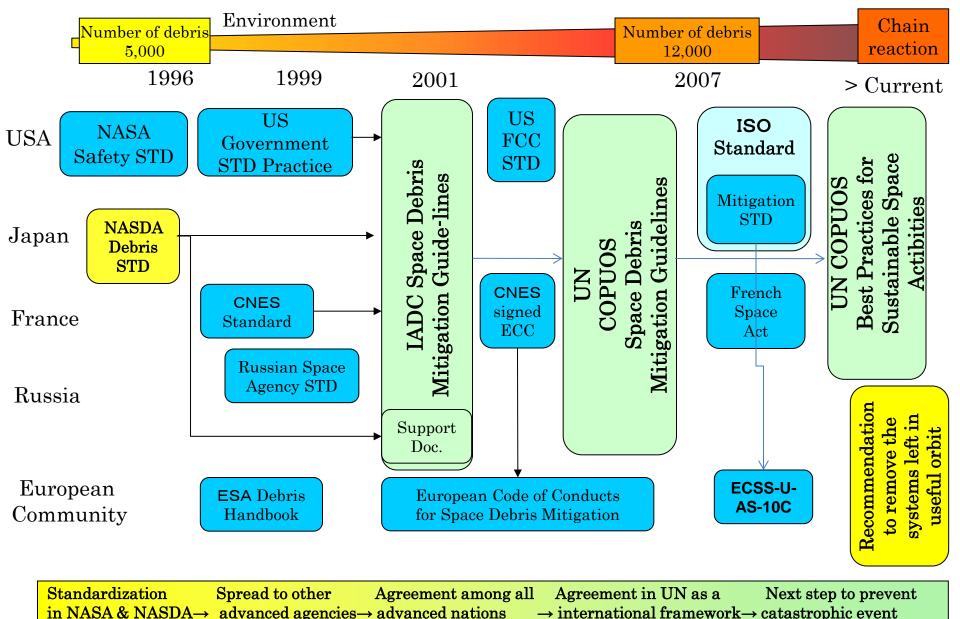
Principles

- (1) Preventing the on-orbit break-up of the space systems
- (2) Transferring a spacecraft that has completed its mission in GEO into higher orbit
- (3) Reducing the stay time of the orbital stage in the GTO
- (4) Minimizing the number of objects released in orbit during operation
- (5) Reducing the stay time of the space systems in LEO.
 (≤ 25 years)
- (6) Minimize the casualty risk on the ground during reentry disposal of space systems
- (7) Avoidance of the on-orbit collision



Space Debris Mitigation Management


- (1) Project and contractors shall assign a responsible organization or individual that has responsibilities to study, plan, implement and review the effective measures to ensure space debris mitigation management.
- (2) Project should develop a feasible Debris Mitigation Plan after tailoring the requirements of this standard in coordination with the Safety and Mission Assurance Department.
- (3) The plan may be incorporated into the System Safety Program Plan. The plan should be offered to the System Safety Review Board for review.
- (4) Contractors should also prepare a Space Debris Mitigation Management Plan which complies with the Debris Mitigation Plan presented by JAXA. The plan should be submitted to JAXA for its approval.


Engineering Study in Each Phase

System Safety Review Board in Each Phase

4. Comparison with Other Major Standards (1)

4. Comparison with Other Major Standards (2)

Major Debris Mitigation Standards in the world

- a) ESA Space Debris Mitigation for Agency Projects, Director General's Office (2008)
- b) ECSS-U-AS-10C, Space Sustainability: Adoption Notice of ISO 24113 Space Systems – Space Debris Mitigation Requirements (2012)
- c) JAXA-JMR-003B, Space Debris Mitigation Standard (2011)
- d) NPR 8715.6, NASA Procedural Requirements for Limiting Orbital Debris (2009)
- e) NASA-STD-8719.14, Process for Limiting Orbital Debris (2011)
- f) Space Debris Mitigation Guidelines of the COPUOS (2007)
- g) IADC-02-01: IADC Space Debris Mitigation Guidelines (2007),
- h) ISO-24113 Space systems Space debris mitigation requirements (2011)
- i) European Code of Conduct for Space Debris Mitigation (2004)

Table-1: Recommendations and Requirements in Major World Debris Mitigation Standards

(Part 1 of 2)

	Measures	ESA Space Debris Mitigation for Agency Projects ^a	Space Sustainability (ECSS-U-AS-10C) ^b	JAXA (JMR-003B) °	NASA (NPR 8715.6 ^d and NPR 8719.14 ^e)
Mission Related Objects	Operational Debris	Required	Required May not exceed: one for single payload launch, and two for multiple payloads	Required	 (1) LEO: >1mm (decay within 25 years, and total < 100 object-years) (2) GEO: > 5cm (decay -500km within 25 years)
Mission R.	Slag from Solid Motor	Slag < 1mm	Required (Slag < 1mm for GEO)	Required	
	Pyrotechnics	Particles < 1mm	Combustion products < 1 mm	Combustion products < 1 mm	
	Secondary Ejector				
On-orbital Breakups	Avoidance of Intentional Destruction	Required	Required	Required	 (1) <100 object-years (for > 10 cm) (2) Fragments > 1mm shall be limited 1 year (3) Fragments > 1mm, collision with Operating S/C shall be limited < 10⁻⁶
	Accident During Operation			Required (Monitoring)	Probability of BU < 10 ⁻³
	Postmission Breakup (Passivation, etc.)	Required (to be conducted < 2 months)	Probability of BU < 10 ⁻³	Required	Required
Collision	With Large Objects	Risk Assessment		Required (CAM, COLA)	< 0.001 (with > 10 cm)
Comsteri	With Small Objects			Required	Disposal Success > 0.01

		Measures	ESA Space Debris Mitigation for Agency Projects ^a	Space Sustainability (ECSS-U-AS-10C) ^b	JAXA (JMR-003B) °	NASA (NPR 8715.6 ^d and NPR 8719.14 ^e)
	GEO	Reorbit at EOL	235 km+ (1,000 • Cr • A/m) e < 0.005	235 km+ (1,000 • Cr • A/m) Success Probability > 0.9 100 years' guarantee	235 km+ (1,000 • Cr • A/m) Success Probability >0.9	235 km + (1,000 • Cr • A/m) e < 0.003 Success Probability > 0.9 100 years' guarantee
gal		GEO Lower Limit		< -500 km (within 25 years)	< -500 km (within 25 years)	GEO - 500 km
Dispos		Protected Inclination	-15 < Inclination < 15 deg	-15< Inclination <15 deg.	-15< Inclination <15 deg.	-15< Inclination <15 deg
Post mission Disposal	õ	Reduction of Orbital Lifetime	EOL Lifetime < 25years	EOL Lifetime < 25years Success Probability >0.9	EOL Lifetime < 25years Success Probability > 0.9	Total Period < 30 years EOL Lifetime < 25years Success Probability > 0.9
	LEO (MEO)	Transfer to Graveyard	Required (Excluding Galileo orbit)	Required	Required	2,000 km ~ (GEO-500 km) (exclude 19,100 - 20,200 km)
		On-orbital Retrieval			Required	Retrieve within 10 years
		Ground Casualty	Ec < 10⁻⁴	Required	Ec < 10 ⁻⁴	Ec < 10 ⁻⁴ , (Count impact energy > 15 J)
Oth	ners	Tether			Required	Required

Table 1 (Continued): Recommendations and Requirements in Major World Debris Mitigation Standards (Part 2 of 2)

	Measures	UN Guidelines ^f	IADC Guidelines ^g	ISO (DIS-24113) ^h	European Code of Conduct for Space Debris Mitigation ⁱ	U.S. Gov. Standard Mitigation Practices
Mission Related Objects	Operational Debris	Addressed in Rec-1	Addressed in 5.1	Required	Required not exceed, one for single payload launch, and two for multiple payloads	> 5 mm (decay within 25 years)
r Relat	Slag from Solid Motor			Required	Slag < 0.01mm (Changed to 1mm)	
Mission	Pyrotechnics			Combustion Products < 1 mm	Objects < 0.01mm	
2	Secondary Ejector				Required (SD-DE-07)	
	Intentional Destruction	Addressed in Rec-4	Addressed in 5.2.3	Required	Required (SD-DE-04)	
On-orbital Breakups	Accident During Operation	Addressed in Rec-2	Addressed in 5.2.2 (Monitoring)	Probability of BU < 10^{-3}	Probability of BU < 10 ⁻⁴ (SD-DE-05)	Required
	Postmission Breakup (Passivation, etc.)	Addressed in Rec-5	Addressed in 5.2.1	Probability of BU < 10 ⁻³	Required Inner Press. < 50% of critical Press. Dispose within 1 year Success Probability > 0.9	Required
Collision	With Large Objects	Addressed in Rec-3 (CAM, COLA)	Addressed in 5.6		Required	
	With Small Objects		Addressed in 5.6		(Recommended by other document)	

		Measures	UN Guidelines ^f	IADC Guidelines ^g	ISO (DIS-24113) ^h	European Code of Conduct for Space Debris Mitigation ⁱ	U.S. Gov. Standard Mitigation Practices
	GEO	Reorbit at EOL	Addressed in Rec-7	235 km+ (1,000 • Cr • A/m) e < 0.003	235 km+ (1,000 • Cr • A/m) e < 0.003 Success Probability > 0.9 100 years' guarantee	235 km+ (1,000 • Cr • A/m) Success Probability >0.9	>36,100 km (> 300km + GEO)
		GEO Lower Limit		-200 km		-200 km	
sposal		Protected Inclination		-15< latitude <15 deg.	-15< latitude <15 deg.	-15< latitude <15 deg.	
Post-mission Disposal	LEO (MEO)	Reduction of Orbital Lifetime	Addressed in Rec-6	Addressed in 5.4 (Recommend 25 years)	EOL Lifetime < 25years Success Probability >0.9 100 years' guarantee	EOL Lifetime < 25years Success Probability >0.9	EOL Lifetime < 25 years
<u>.</u>		Transfer to Graveyard			Required	Required	2,000 - 19,700 km 20,700-35,300 km
		On-orbital Retrieval		Addressed in 5.4			Retrieve within 10 years
		Ground Casualty	Addressed in Rec-6	Addressed in 5.4	Required	Ec < 10 ⁻⁴ (Excluding France)	Ec < 10 ⁻⁴
Oth	Others						

Table-1 global debris mitigation rules and JAXA standard

		Measures	ISO Standards (or Technical Reports)	JAXA (JMR-003B)	IADC Guidelines ^g
	jects	General idea to refrain from releasing objects	ISO-24113 / § 6.1.1	Required	§ 5.1
tion	d Ob	Slag from Solid Motor	ISO-24113 / § 6.1.2.2, § 6.1.2.3	Required	
Limiting Debris Generation	Released Objects	Combustion Products from Pyrotechnics	ISO-24113 / § 6.1.2.1 (Combustion Products < 1 mm)	Combustion products < 1 mm	
Debr		Intentional Destruction	ISO-24113 / § 6.2.1	Required	§ 5.2.3
miting	On-orbital Breakups	Accident During Operation	ISO-24113 / § 6.2.2 (Probability < 10 ⁻³)	Required (Monitoring) (Probability < 10 ⁻³)	§ 5.2.2 (Monitoring)
Γ	On- Bre	Post mission Breakup (Passivation, etc.)	ISO-24113 / § 6.2.2.3 (Detailed in ISO-16127) (Probability < 10 ⁻³)	Required	§ 5.2.1
ation	GEO	Reorbit at EOL	ISO-24113 / § 6.3.2 (Detailed in ISO-26872) § 6.3.2.2: 235 km+ (1,000 • Cr • A/m), e < 0.003 § 6.3.1: Success Probability > 0.9	235 km+ (1,000 • Cr • A/m) e < 0.003 Success Probability >0.9	§ 5.3.1 235 km+ (1,000 · Cr · A/m), e < 0.003
Disposal at End of Operation	(MEO)	Reduction of Orbital Lifetime	ISO-24113 / § 6.3.3 (Detailed in ISO-16164) § 6.3.3.1: EOL Lifetime < 25years § 6.3.1: Success Probability >0.9	EOL Lifetime < 25years Success Probability > 0.9	§ 5.3.2 (Recommend 25 years)
at E	reo (i	Transfer to Graveyard	ISO-24113 / § 6.3.3.2 (f) (guarantee 100 years' non-interference)	Required	Mentioned in recommendation-6
		Other manners	ISO-24113 / § 6.3.3.2 (a) ~ (e)		§ 5.3.2
Re-ei	Re-entry Ground Casualty		ISO-24113 / § 6.3.4 (Detailed in ISO-27875)	Ec < 10 ⁻⁴	§ 5.3.2
Collisio	Collision Avoidance with Large Debris		ISO-16158	Required (CAM, COLA)	§ 5.4
Protec	Protection from Impact of Tiny Debris		ISO-16126	Required	§ 5.4