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The discovery of Ceres

Giuseppe Piazzi
(1746-1826)

On January 1, 1801 G. Piazzi detected
Ceres, the first asteroid.
He could follow up the asteroid in the sky for
about 1 month, collecting 21 observations
forming an arc of ∼ 3 degrees.

Problem: find in which part of the sky we should observe to
recover Ceres;

Orbit determination: given the observations of a celestial
body, compute its orbital elements.
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Orbit determination methods

Ceres was recovered in 1802 by H. W. Olbers and F. Von Zach
following the computations of C. F. Gauss.
Gauss determined an orbit with Piazzi’s observations.
Given at least three observations of a Solar system body, his
method consists of two steps:

1 computation of a preliminary orbit;
2 application of the least squares method (differential

corrections), using the preliminary orbit as a starting guess.

Preliminary orbits:

- Laplace’s method (1780)

- Gauss’ method (1809)
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Geometry of the observations
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Laplace’s method

ρ = ρρ̂ is the geocentric position vector of the observed body,

ρ = ‖ρ‖, ρ̂ = (cos δ cosα, cos δ sinα, sin δ),

with α, δ the right ascension and declination.

q = qq̂ is the heliocentric position vector of the center of the
Earth, with q = ‖q‖.

r = q + ρ is the heliocentric position of the body.

We use the arc length s to parametrize the motion:

η =
ds
dt

=

√

α̇2 cos2 δ + δ̇2 proper motion

Giovanni F. Gronchi Glasgow, University of Strathclyde, November 20, 2013



Laplace’s method

Using the moving orthogonal frame

ρ̂, v̂ =
dρ̂
ds
, n̂ = ρ̂× v̂,

we introduce the geodesic curvature κ by

dv̂
ds

= −ρ̂+ κn̂.

The acceleration of ρ is given by

d2

dt2ρ = (ρ̈− ρη2)ρ̂+ (ρη̇ + 2ρ̇η)v̂ + (ρη2κ)n̂.
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Laplace’s method

On the other hand we have

d2

dt2ρ =
d2

dt2 (r − q)

where, according to the equations of the two-body motion,

d2

dt2 r = − µ

r3 r ,
d2

dt2 q = −µ+ µ⊕
q3 q ,

with r = ‖r‖ and µ, µ⊕ the masses of the Sun and of the Earth
respectively.
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Laplace’s method

From three or more observations (αi, δi) of a celestial body at
times ti, i = 1, 2, 3 . . . we can interpolate for α, δ, α̇, δ̇ at a mean
time t̄.

Neglecting the mass of the Earth and projecting the equation of
motion on n̂ at time t̄ we obtain

C ρ
q
= 1 − q3

r3 where C =
η2κq3

µ(q̂ · n̂)
, (1)

where ρ, q, r, η, q̂, n̂, C are the values at time t̄.
(1) is the dynamical equation of Laplace’s method.

Here ρ and r are unknowns, while the other quantities are
obtained by interpolation.
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Laplace’s method

Using (1) and the geometric equation

r2 = q2 + ρ2 + 2qρ cos ǫ,

with cos ǫ = q · ρ/(qρ) interpolated at time t̄, we can write a
polynomial equation of degree eight for r by eliminating the
geocentric distance ρ:

C2r8 − q2(C2 + 2C cos ǫ+ 1)r6 + 2q5(C cos ǫ+ 1)r3 − q8 = 0.

Projecting the equation of motion on v̂ yields

ρη̇ + 2ρ̇η = µ(q · v̂)
(

1
q3 − 1

r3

)

. (2)

We can use equation (2) to compute ρ̇ from the values of r, ρ
found by the geometric and dynamical equations.
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Gauss’ method

Gauss’ method naturally deals with topocentric observations.

This method uses three observations (αi, δi), i = 1, 2, 3, related
to heliocentric positions of the observed body

ri = ρi + qi,

at times ti, with t1 < t2 < t3.

Here ρi denotes the topocentric position of the observed body,
and qi is the heliocentric position of the observer.

We assume that ti − tj is much smaller than the period of the
orbit.

Giovanni F. Gronchi Glasgow, University of Strathclyde, November 20, 2013



Gauss’ method

We assume the coplanarity condition

λ1r1 − r2 + λ3r3 = 0 λ1, λ3 ∈ R. (3)

The vector product of both members of (3) with ri, i = 1, 3,
together with the projection along the direction ĉ of the angular
momentum yields

λ1 =
r2 × r3 · ĉ
r1 × r3 · ĉ

, λ3 =
r1 × r2 · ĉ
r1 × r3 · ĉ

.

From the scalar product of both members of (3) with ρ̂1 × ρ̂3,
using relations ri = ρi + qi, we obtain

ρ2(ρ̂1 × ρ̂3 · ρ̂2) = ρ̂1 × ρ̂3 · (λ1q1 − q2 + λ3q3).

So far, we have used only the geometry of the orbit.
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Gauss’ method

Now dynamics comes into play.

Development in f , g series: the differences r1 − r2, r3 − r2 are
expanded in powers of ti2 = ti − t2 = O(∆t), i = 1, 3.
We can leave only r2, ṙ2 in the expansion by replacing the
second derivative r̈2 with −µr2/r3

2:

ri = fir2 + giṙ2,

where

fi = 1 − µ

2
t2
i2

r3
2

+O(∆t3), gi = ti2

(

1 − µ

6
t2
i2

r3
2

)

+O(∆t4). (4)
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Gauss’ method

Using the f , g series we have

ri × r2 = −gic, i = 1, 3
r1 × r3 = (f1g3 − f3g1)c

so that
λ1 =

g3

f1g3 − f3g1
, λ3 =

−g1

f1g3 − f3g1
. (5)

Inserting the expressions of fi, gi into (5) we obtain

λ1 =
t32

t31

[

1 +
µ

6r3
2

(t2
31 − t2

32)
]

+O(∆t3),

λ3 =
t21

t31

[

1 +
µ

6r3
2

(t2
31 − t2

21)
]

+O(∆t3).
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Gauss’ method

Now we consider the equation

ρ2(ρ̂1 × ρ̂3 · ρ̂2) = ρ̂1 × ρ̂3 · (λ1q1 − q2 + λ3q3). (6)

Let
V = ρ̂1 × ρ̂2 · ρ̂3.

By substituting the expressions for λ1, λ3 into (6), using
relations

t2
31 − t2

32 = t21(t31 + t32),

t2
31 − t2

21 = t32(t31 + t21),

we can write

−Vρ2t31 = ρ̂1 × ρ̂3 · (t32q1 − t31q2 + t21q3) +

+ρ̂1 × ρ̂3 ·
[ µ

6r3
2

[t32t21(t31 + t32)q1 + t32t21(t31 + t21)q3]
]

+O(∆t4).
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Gauss’ method

We neglect the O(∆t4) terms and set

A(q1,q2,q3) = q3
2 ρ̂1 × ρ̂3 · [t32q1 − t31q2 + t21q3],

B(q1,q3) =
µ

6
t32t21ρ̂1 × ρ̂3 · [(t31 + t32)q1 + (t31 + t21)q3].

In this way the last equation becomes

− V ρ2 t31

B(q1,q3)
q3

2 =
q3

2

r3
2

+
A(q1,q2,q3)

B(q1,q3)
.
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Gauss’ method

Let

C =
V t31 q4

2

B(q1,q3)
, γ = −A(q1,q2,q3)

B(q1,q3)
.

We obtain the dynamical equation of Gauss’ method:

C ρ2

q2
= γ − q3

2

r3
2

. (7)

After the possible values for r2 have been found by (7), coupled
with the geometric equation

r2
2 = ρ2

2 + q2
2 + 2ρ2q2 cos ǫ2,

then the velocity vector ṙ2 can be computed, e.g. from Gibbs’
formulas (see Herrick, Chap. 8).
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Correction by aberration

Sun
Earth

Asteroid

q(t)

r(t)

ρ(t)r(t − δt)

ρ(t − δt)

with
δt =

ρ

c
,

where ρ is the determined value of the radial distance, and c is
the speed of light.
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Least squares orbits

We consider the differential equation

dy
dt

= f(y, t,µ) (8)

giving the state y ∈ R
p of the system at time t.

For example p = 6 if y is a vector of orbital elements.

µ ∈ R
p′ are called dynamical parameters.

The integral flow, solution of (8) for initial data y0 at time t0, is
denoted by Φt

t0(y0,µ).
We also introduce the observation function

R = (R1, . . . ,Rk) , Rj = Rj(y, t,ν) , j = 1 . . . k

depending on the state y of the system at time t.

ν ∈ R
p′′ are called kinematical parameters.
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Least squares orbits

Moreover we define the prediction function

r = (r1, . . . , rk), r(t) = R(Φt
t0(y0,µ), t,ν).

The components ri give a prediction for a specific observation
at time t, e.g. the right ascension α(t), or the declination δ(t).

We can group the multidimensional data and predictions into
two arrays, with components

ri, r(ti), i = 1 . . .m

respectively, and define the vector of the residuals

ξ = (ξ1, . . . , ξm) , ξi = ri − r(ti) , i = 1 . . .m .
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The least squares method

The least squares principle asserts that the solution of the orbit
determination problem makes the target function

Q(ξ) =
1
m

ξT ξ (9)

attain its minimal value.

We observe that
ξ = ξ(y0,µ,ν)

and select part of the components of (y0,µ,ν) ∈ R
p+p′+p′′ to

form the vector x ∈ R
N of the fit parameters, i.e. the parameters

to be determined by fitting them to the data.
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The least squares method

Let us define
Q(x) = Q(ξ(x; z)),

with z the vector of consider parameters, i.e. the remaining
components of (y0,µ,ν) fixed at some assumed value.

An important requirement is that m ≥ N.

We introduce the m × N design matrix

B =
∂ξ

∂x
(x)

and search for the minimum of Q(x) by looking for solutions of

∂Q
∂x

=
2
m

ξT B = 0 . (10)

To search for solutions of (10) we can use Newton’s method.
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The least squares method

Newton’s method involves the computation of the second
derivatives of the target function:

∂2Q
∂x2 =

2
m

Cnew, Cnew = BT B + ξT H, (11)

where

H =
∂2ξ

∂x2 (x)

is a 3-index array of shape m × N × N.

By ξTH we mean the matrix with components
∑

i ξi
∂2ξi

∂xj∂xk
.
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Differential corrections

A variant of Newton’s method, known as differential corrections,
is often used to minimize the target function Q(x).
We can take the normal matrix C = BT B in place of Cnew.
At each iteration we have

xk+1 = xk − C−1 BTξ

where B is computed at xk.

This approximation works if the residuals are small enough.

Let x∗ be the value of x at convergence. The inverse of the
normal matrix

Γ = C−1 (12)

is called covariance matrix and its value in x∗ can be used to
estimate the uncertainty of the solution of the differential
corrections algorithm.
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Lecture II

Lecture II

Charlier’s theory of multiple solutions
and its generalization
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Equations for preliminary orbits

From the geometry of the observations we have

r2 = ρ2 + 2qρ cos ǫ+ q2 (geometric equation). (13)

From the two-body dynamics, both Laplace’s and Gauss’
method yield an equation of the form

C ρ

q
= γ − q3

r3 (dynamic equation) , (14)

with C, γ real parameters depending on the observations.
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Preliminary orbits and multiple solutions

intersection problem:






(qγ − Cρ)r3 − q4 = 0
r2 − q2 − ρ2 − 2qρ cos ǫ = 0
r, ρ > 0

(15)

reduced problem:
P(r) = 0 , r > 0 (16)

with

P(r) = C2r8 − q2(C2 + 2Cγ cos ǫ+ γ2)r6 + 2q5(C cos ǫ+ γ)r3 − q8.

We investigate the existence of multiple solutions of the
intersection problem.

Giovanni F. Gronchi Glasgow, University of Strathclyde, November 20, 2013



Charlier’s theory

Carl V. L. Charlier (1862-1934)

In 1910 Charlier gave a geometric
interpretation of the occurrence of multiple
solutions in preliminary orbit determination with
Laplace’s method, assuming geocentric
observations (γ = 1).

‘the condition for the appearance of another solution simply
depends on the position of the observed body’ (MNRAS, 1910)

Charlier’s hypothesis: C, ǫ are such that a solution of the
corresponding intersection problem with γ = 1 always exists.
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Charlier’s theory

A spurious solution of (16) is a positive root r̄ of P(r) that is not
a component of a solution (r̄, ρ̄) of (15) for any ρ̄ > 0.

We have:

P(q) = 0, and r = q corresponds to the observer position;

P(r) has always 3 positive and 1 negative real roots.

Let P(r) = (r − q)P1(r): then

P1(q) = 2q7C[C − 3 cos ǫ].

If P1(q) < 0 there are 2 roots r1 < q, r2 > q; one of them is
spurious.
If P1(q) > 0 both roots are either < q or > q; they give us 2
different solutions of (15).

Giovanni F. Gronchi Glasgow, University of Strathclyde, November 20, 2013



Zero circle and limiting curve

zero circle: C = 0,
limiting curve: C − 3 cos ǫ = 0.
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The green curve is the zero circle.
The red curve is the limiting curve,
whose equation in heliocentric
rectangular coordinates (x, y) is

4 − 3
x
q
=

q3

r3 .
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Geometry of the solutions
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intersection of the level curve
C
(1)(x, y) = C with the

observation line (defined by ǫ),
where C

(1) = C(1) ◦Ψ,

C(1)(r, ρ) = q
ρ

[

1 − q3

r3

]

and (x, y) 7→ Ψ(x, y) = (r, ρ) is
the map from rectangular to
bipolar coordinates.

Note that the position of the observed body defines an
intersection problem.
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The singular curve
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Multiple solutions: summary
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Generalized Charlier’s theory

See Gronchi, G.F.: CMDA 103/4 (2009)

Let γ ∈ R, γ 6= 1. By the dynamic equation we define

C
(γ) = C(γ) ◦Ψ , C(γ)(r, ρ) =

q
ρ

[

γ − q3

r3

]

with (x, y) 7→ Ψ(x, y) = (r, ρ).

We also define the zero circle, with radius

r0 = q/ 3
√
γ, for γ > 0.

Introduce the following assumption:

the parameters γ, C, ǫ are such that the corresponding
intersection problem admits at least one solution.

(17)
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Topology of the level curves of C(γ)
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Topology of the level curves of C(γ)
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The singular curve

For γ 6= 1 we cannot define the limiting curve by Charlier’s
approach, in fact P(q) 6= 0. Nevertheless we can define the
singular curve as the set

S = {(x, y) : G(x, y) = 0} , G(x, y) = −γr5 + q3(4r2 − 3qx).
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An even or an odd number of solutions

The solutions of an intersection problem (15) can not be more
than 3. In particular, for (γ, C, ǫ) fulfilling (17) with γ 6= 1,
if the number of solutions is even they are 2,
if it is odd they are either 1 or 3.
For γ 6= 1 we define the sets

D2(γ) =







∅ if γ ≤ 0
{(x, y) : r > r0} if 0 < γ < 1
{(x, y) : r ≤ r0} if γ > 1

and
D(γ) = R

2 \ (D2(γ) ∪ {(q, 0)}) .

Points in D2(γ) corresponds to intersection problems with 2
solutions; points in D(γ) to problems with 1 or 3 solutions.
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Residual points

P=P’

Earth Earth

b)a)

P’

P

Fix γ 6= 1 and let (ρ̄, ψ) correspond to a point P ∈ S = S⋂D.
Let

F(C, ρ, ψ) = C ρ
q
− γ +

q3

r3
,

If Fρρ(C, ρ̄, ψ) 6= 0, we call residual point related to P the point
P′ 6= P lying on the same observation line and the same level
curve of C(γ)(x, y), see Figure a).

If Fρρ(C, ρ̄, ψ) = 0 we call P a self–residual point, see Figure b).
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The limiting curve

Let γ 6= 1. The limiting curve is the set composed by all the
residual points related to the points in S.
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The limiting curve

Separating property: the limiting curve L separates D into two
connected regions D1,D3: D3 contains the whole portion S of
the singular curve. If γ < 1 then L is a closed curve, if γ > 1 it is
unbounded.

y

x

limiting

singular

A

B

CDC′ D′

(γ ≤ 0)
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The limiting curve

Transversality: the level curves of C(γ)(x, y) cross L
transversely, except for at most the two self–residual points and
for the points where L meets the x-axis.

Limiting property: For γ 6= 1 the limiting curve L divides the set
D into two connected regions D1,D3: the points of D1 are the
unique solutions of the corresponding intersection problem; the
points of D3 are solutions of an intersection problem with three
solutions.
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Multiple solutions: the big picture
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