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Motivation (1) 

• There are several different methods already proposed for NEA mitigation including: 

 (sudden) deflection by collision 

 (sudden) deflection by nuclear explosion 

 (slow) deflection using gravity tractor 

 (slow) deflection using Yarkovsky effect 

 (slow) deflection using surface mass driver 

 

• These different methods can require different types of spacecraft trajectories, e.g. the 

first requires interception while the others need rendezvous. 

 

• The trajectories in either case may use impulsive (chemical) thrust, or low (electric) 

      thrust, or a combination of the two.  

 

• The trajectories may make use of planetary flybys (gravity assist maneuvers) 

  



Motivation (2) 

 

•These trajectories are all too challenging to solve analytically – need a numerical 

 solution. 

 

•Unfortunately each combination of possible trajectory elements:  

 interception/rendezvous 

 impulsive thrust/ low-thrust/ combination 

 planetary flybys/ no planetary flybys 

may require a different numerical solution approach. 

 

•However one thing that nearly all such solutions will have in common, based on our  

      experience, is that accurate solutions require a two-step process: 

 

 Find approximate solution (guess)          Refine guess with accurate solver 

  

Þ



Motivation (3) 

 

• So this series of three lectures is intended to (only): 

 

 Show how to formulate the trajectory optimization problem for some of the mitigation 

 strategies 

 

 Describe the numerical solution methods available  

 

 Show what numerical solution approaches have been successful with a number of these 

 possible missions (via examples) 

 

(Note that the first two items alone could easily constitute a year-long graduate-level class.) 

 



Lecture 1: Methods for Optimizing Interplanetary Trajectories I 

 

 

        

 

 

The problem: objectives, equations of motion, typical boundary conditions 

 

Methods of solution, indirect vs. direct 

 

Brief Summary of Extant Methods for Trajectory Optimization 

 1960’s - Hamiltonian methods, primer vector theory  

 1980’s - Direct transcription (DT), collocation with NLP 

2000’s - Evolutionary algorithms (EA) and metaheuristics 

 

Most important distinction: impulsive or low-thrust propulsion – impulsive case is 

a parameter optimization problem/ L-T case is a continuous optimization problem 

 

Low-thrust case much more challenging. Possible solution strategies: 

 Hamiltonian (COV) methods 

 direct transcription (DT) 

 “shape-based” methods 

 Sims-Flanagan transcription 

  

The need for an initial guess of the solution and how to obtain one 

 

 



Lecture 2: Methods for Optimizing Interplanetary Trajectories II / 

               Application to the Problem of NEA Deflection       

 

        

 

 

Metaheuristic methods for solution of optimal spacecraft trajectory problems: as initial guess 

for a more precise method or as solution in own right 

 

Need different approaches for “naturally discrete” problems/ continuous-thrust problems 

 

Examples 

  

Proposed methods of asteroid deflection: collision, nuclear explosion, mass drivers,  

gravity tractor. Advantages and disadvantages. 

 

The objective: maximizing deflection (easy) vs. maximizing displacement from Earth 

surface (complicated) 

 

Using the state transition matrix to optimize deflection via collision 

  



Lecture 3: Asteroid Deflection/ Characterization by Sample Return 

       

 

        

 

 

Optimizing asteroid deflection via collision using a low-thrust spacecraft 

 

Setting up the problem for solution by a numerical optimization method 

 

Example trajectories and resulting deflections 

 

A related problem: reconnaissance of a potentially dangerous asteroid 

 

Optimizing a reconnaissance/sample return mission to an asteroid using 

 particle swarm optimization 

 

Examples and results 

 



The Spacecraft Trajectory Optimization Problem   

Objective: minimize propellant mass required, minimize flight time, 

                  maximize miss distance of NEA at time of closest approach 

 

Equations of Motion: Can be directly based on Newton’s 2nd law, e.g.  
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or, may be Gauss or Lagrange form of variational eqns. 

in terms of orbital elements, i.e.  
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The Spacecraft Trajectory Optimization Problem   

Typical boundary conditions: arrive into specified orbit at destination planet (Galileo) 

   perform flyby of destination planet (Voyager) 

   arrive into halo orbit (ISEE-3) 

   land on planetary surface 

   orbit transfer (e.g. LEO to GEO) 

    

    

     

  



Methods of Solution: Indirect vs. Direct   

 Solutions can be categorized into two basic types: Indirect and Direct 

 

 Indirect     Direct 

 

Uses the analytical necessary conditions Transforms the continuous optimization 

(NC) of the calculus of variations (COV) problem into a discrete parameter 

     optimization (NLP) problem 

These are sometimes also referred to as  

Hamiltonian methods   Many transcription methods extant: 

     direct collocation, Gauss pseudospectral 

A particular application of the COV to   methods, R-K parallel shooting 

space trajectory optimization yields 

“primer vector” theory   Very simply incorporates control bounds 

     and boundary conditions (terminal and 

Few analytical solutions possible; must  path constraints) 

solve the NC using a numerical method 

     Typically yields 100’s to 1000’s of 

Characterized by having few, 10’s to 100’s, free parameters (usually states and  

of free parameters (usually initial multipliers)  controls) 

 



The Optimal Control Problem 

 

 

 

 

System:  x = f (x,  u,  t),   x(0) given

y x(T),  T  = 0,   q constraint eqns.  

Problem: Find control u(t) to minimize   
J = f x(T),  T  + L x,  u,  t  dt 

0

T

Calculus of Variations necessary conditions:  (Euler-Lagrange equations) 

Define Hamiltonian H = L + l
T
 f ,  then
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Analytical (COV-Based) Methods   Example 

     the Brachistochrone (1696) 

 

x = 2gy cosq,  x(0) = 0

y = 2gy sinq, y(0) = y
0

,  y(t
f
) = y

0

Define

H = 1+ l
x

2gy cosq + l
y

2gy sinq

Then, the necessary conditions for

 an optimal trajectory become:
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This is a TPBVP with 4 ODE’s. The 

optimal control is determined directly by 

the Lagrange multipliers through the 

optimality condition. 
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Continuous System with Control Constraints 

When there are constraints on the magnitude of the control u

the control is determined according to:

¶H

¶u
= 0    if  the resulting u satisfies the constraints, 

or,   u is chosen to minimize the instantaneous value of the

Hamiltonian H  (Pontryagin minimum principle).

In both cases, the optimality condition is a function of the instantaneous

states, the instantaneous values of the Lagrange multipliers (costates),

or both.



Lagrange and Me 



Generic Spacecraft in Inverse-Square Gravitational Field 

• The system differential equations become 

q

r
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vt

V
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b

Reference LineAttracting
Body

S/C - the spacecraft
V - spacecraft velocity
A - thrust acceleration

b - thrust direction angle

S/C

where:  s is the throttling parameter, 0 £  s £  1

            gravitational force function g(r) = -1/r2

or  x = r, q, vr, v
q
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Necessary Conditions – Lagrange Multiplier DE’s 

dl

dt
= -F(x,u)T l,  with F(x,u) =

¶f

dx

F =

0 0 1 0 0

-vq / r2 0 0 1/ r 0

-vq
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where l = lr ,lq ,lvr ,lvq ,la[ ]
T

 , x= r,q,vr ,vq ,a[ ]
T

,  u = b,  and the F matrix is:

In this coordinate system the multiplier (costate) differential equations become: 



 Possible Objectives 

For the impulsive case the fuel-minimizing trajectory minimizes the sum of the  

impulses, i.e.  

J = DVi

i=1

N

å

For the continuous thrust case the fuel-minimizing trajectory minimizes: 

J = sa dt
0

t f

ò = s
T

m
 dt

0

t f

ò  

where T is the thrust provided by the engine and s is the throttling parameter (0 £ s £1)

J = f x(t f ),t f
é
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For the minimum-time case the objective becomes  



Necessary Conditions - Optimal Control 

The Hamiltonian can be written in a more compact form by

defining:       r = 
r

q

é

ë
ê

ù

û
ú,  v = 

vr

vq

é

ë

ê
ê

ù

û

ú
ú
,   lr =

lr

lq

é

ë

ê
ê

ù

û

ú
ú

 , lv =
lvr

lvq

é

ë

ê
ê

ù

û

ú
ú
, u  = 

cos b

sin b

é

ë

ê
ê

ù

û

ú
ú

Consider the minimum-fuel case with L  = s, then

H = s + lr
T v+lv

T g(r ) + sau[ ] + lasa2 / c

or,    H = s 1+ alv
T u  + laa2 / c( ) + lr

T v+lv
T g(r )

to minimize H  over all possible u , one chooses

u  = -lv  "primer vector theory" (1960's) (which is equivalent to tan b  = 
lvr

lvq

)



Necessary Conditions-Switching Function 

With u  = -lv,  the Hamiltonian becomes:

H = s 1- alv  + laa2 / c( ) + lr
T v + lv

T g(r )

Let S = 1- alv  + laa2 / c( )

To minimize H over the throttling parameter s one chooses:

s = 1   if S > 0

s = 0   if S < 0

i.e. S = 1- alv  + laa2 / c( )  is the "switching function" for the control.

The optimal control may consist of a sequence of alternating max.

thrust arcs and coast arcs.

The problem is solved if the initial values of the Lagrange multipliers can be determined!



Example: Optimal (minimum-fuel) Low-Thrust Rendezvous, Solved Using the 

Analytical Necessary Conditions 

 

•  rinit =1, rfinal = 3, target lead angle 4.5 rad, a0 = 0.1, c = 1.5 

• Initial and final orbits are circular 

• A TPBVP solver is used to find the required initial values of  lr , lq , lvr
, lvq

, la



• Advantages 

  Familiar 

  A solution provides information, via the primer vector, about how it may be  
      improved, e.g. with a midcourse impulse or coast arc. 

  No question about optimality (local minimum) 

  Optimal control determined analytically 

  Costates represent sensitivity of cost to changes in the states 

 

 

• Disadvantages 

  Immediately increases the dimension of the system by 2x 

  Can’t cope with tabular data, e.g. thrust vs. altitude and temperature 

  Yields a TPBVP; difficult to solve without good initial states/costates 

  Changes in terminal conditions or constraints require changes in the system  
     equations 

  Including path constraints (e.g. dynamic pressure constraints) is problematic 

  

   

Analytical (COV-Based) Methods Advantages and Disadvantages 



Direct Transcription (DT) Solutions 

x1
x2 x3

Nodes

Segments

States

1 2 3 N-1 N N+1

xN-1

xN

xN+1

N-1 N1 2

Collocation or Pseudospectral methods divide continuous history into segments. 

States and controls are known only at discrete points. 

Implicit integration rules, written as nonlinear constraints, enforce satisfaction 

of the equations of motion. 

The optimal control problem is converted into a NLP problem. 



Direct Transcription (DT) Solutions  Collocation w/ NLP 

x i

      

t i+1

fc

x'c

      

fi

t i tc

fi+1

x i+1

Choose “collocation” point at the center 
of the segment. Then, 
 
 

x(tc) = x(s=1/2) = c0 + 
c1

2
 + 

c2

4
 + 

c3

8

= 
xi + xi+1

2
 + 

Dti f(ti) - f(ti+1)

8

Forcing  x(tc) , the slope of the polynomial, to equal the function, evaluated at the center 
 
            

point,                  , yields   f(tc, x( tc))
xi+1 - xi - 

Dti

6
 f(ti) + 4 f(tc) + f(ti+1)  = 0

which is Simpson’s rule! 

x(tc) = x(s=1/2) = c1 + c2 + 
3c3

4
 1

Dti

= 
-3 xi - xi+1

2Dti

 - 
 f(ti) + f(ti+1)

4

In the collocation method we assume that within

each segment the state is described by a 

polynomial in time, e.g.  x = c + c1s + c
2
s2  +c

3
s3  



Direct Transcription (DT) Solutions  R-K Parallel Shooting 

Another DT scheme is Runge-Kutta parallel-shooting. R-K parallel shooting 

uses explicit numerical integration in creating the nonlinear constraints.  
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Direct Transcription (DT) Solutions   Conversion into NLP problem 
 

 

 

Collect all independent variables into a single vector  
 

PT = ZT, ET

where    ZT = (x1
T, u1

T,x2
T, u2

T, ... , xN+1
T , uN+1

T )  

Problem is then of form:   minimize  f (P) subject to constraints 
 

bL  £  
P

AP
C(P)

  £  bU 

where AP contains all of the linear constraints, C(P) is a vector of all of the  
nonlinear constraints. 
 
There will be (N + 1)(number of state variables + number of control variables) 
parameters in the vector Z; usually only a small number of parameters, such 
as switching times for motor operation, in the event vector E.   

ET = (E1, E2, ..., EL)

   



Direct Transcription (DT) Solutions Advantages and Disadvantages 

• Advantages 

  Straightforward to code 

  Don’t need to know optimal control theory; don’t need possibly difficult 

     analytical differentiation  

  Generally robust; tolerant of poor initial guess 

  Control constraints are included trivially 

  Constraints such as dynamic pressure constraints, which are problematic 

       for COV methods, are simply included 

  Changes in terminal conditions or constraints easily made 

 

• Disadvantages 
  States and controls known only at discrete points 

  No guarantee of optimality 

  Need a sufficiently good initial guess – can sometimes use intuition or experience; 

       for challenging problem probably need approximate numerical solution (or homotopy)      

  Likely to converge to a minimum in the neighborhood of the initial guess 

  The solution provides no information about possible improvement; it is the 

  best solution for the given structure.  

 

 



Example: Optimal Low-Thrust Transfer from LEO to Periodic Orbit 

About L1, Solved Using Direct Transcription 

Step 1: The system DE's are numerically integrated assuming thrust is always

             directed along the velocity vector. The integration ends when the S/C is

             near the periodic orbit. This provides the initial guess.

The solution uses the collocation method with NLP   



Step 2: The numerically integrated trajectory is used as an initial guess for the

            NLP solver. The optimizer is required to reach only a specific point on the 

            periodic orbit, i.e. to minimize f  = xf - xs( )
2

+ yf - ys( )
2



Step 3: The previous trajectory is used as an initial guess for the NLP solver. The 

            optimizer is required to achieve a specific velocity on the periodic orbit

            i.e. by minimizing f  = vxf
- vxs( )

2
+ vyf

- vys( )
2

 but with final position 

            constrained to the same point (xs , ys ).



Step 4: The previous solution is used as an initial guess for the NLP solver. 

            The optimizer is now allowed to move the entry point to any position

            on the periodic orbit in order to minimize the final time, t f ,  (which 

            simultaneously minimizes fuel consumption.)



Evolutionary Algorithms (EA’s) and Metaheuristics 

“Evolutionary computation has as its objective to mimic processes from natural 

evolution, where the main concept is survival of the fittest: the weak must die.” 

A. Engelbrecht, Computational Intelligence (2007)   

 

 

Among the best known and most often employed EA’s and heuristics are: 

 

 Genetic Algorithms (GA) which model genetic evolution 

 

 Differential Evolution Algorithms (DE) similar to GA but for  

   continuous-valued problems; also the mutation  

   operator is dependent on the current population 

 

 Particle Swarm Algorithms (PSO) which model cooperative behavior of 

   a swarm; e.g. a flock of birds  

  

 Ant Colony Algorithms (ACO) model the foraging behavior of ants 



Genetic Algorithm 

• The genetic algorithm (GA) is a method for solving an optimization problem 

starting from a set of completely random candidate solutions and searching for 

a solution using three principles of biological evolution: 

– Tournament selection 

 

– Binary crossover 

 

– Uniform mutation 

 

– Elitism (retain at least the best n unmodified individuals from the previous 

generation) 

• There are both integer and real forms of the GA 

1 2 3 4 3 4 5 6 0 9 6 7 2 8 1 6 

0 9 6 4 3 4 1 6 

1 2 3 9 3 4 5 6 



Particle Swarm Optimization 

The Particle Swarm Optimization (PSO) technique mimics the unpredictable 

motion of bird flocks while searching for food. 

 

The initial population is randomly generated. 

 

At a given iteration each particle is associated with a position vector and a     

velocity vector. 

 

The formula for velocity update includes three terms with stochastic weights: 

   The inertial component is proportional to the particle velocity in the  

 preceding iteration 

   The cognitive component is directed toward the best position  

 experienced by the particle 

   The social component is directed toward the best position yet located  

 by any particle in the swarm. 

 

At the end of the process the best particle is expected to contain the globally     

optimal values of the unknown parameters in the search space. 



Particle Swarm Optimization 

At the jth iteration, for particles i = 1, …, N 

 

i) For i = 1, …, N: evaluate the objective function associated with particle i, 

 

ii) Determine the best position ever visited (i.e. at any generation) by particle i,  

 

iii) Determine the best position ever visited by any particle in the swarm, 

 

iv) Update the velocity vector for each particle: 

 

 

 

 

 

 

 

 

 

 

 

             

J ( j )(i)

y ( j )(i)

Y ( j )(i)
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û,    k = 1,...,n

where the inertial, cognitive, and social weights have the following form:

cI =
1+ r1(0,1)

2
,   cc = 1.49445r2 (0,1),   cs = 1.49445r3(0,1)

v) Update the position vector for each particle*: 

 

xk
( j+1)(i) = xk

( j )(i)+ wk
( j+1)(i),    k = 1,...,  n

vi)   Terminate when max number of iterations           is reached. N IT



Particle Swarm Optimization    Incorporating Constraints 

• Two ways of dealing with problems with constraints: 

 

1) Penalty method 

 

 

 

 

 

2) Multi-objective GA 

 

 

 

 

 

• Result is Pareto optimal set of solutions 

– Which solution is used for further analysis? 
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Test Case 1 Solved via Conventional Methods 

Optimal solution
Estimate causing convergence

No convergence

0 2 4 6 8 10

0

2

4

6

8

10

		

ÑF(r)= [
1

r
1

+2r
1
	
1

r
2

+2r
2
]T



Static Optimization Test Case 1 



Test Case 2 Solved via Conventional Methods 

Init Guess 

(Objective Val) 

Converges To (Objective 

Val) 

Major 

iterations 

{2.24, -7.24}, (14.8) {1.98, -2.97}, (7.96) 12 

{6.59, -6.42}, (16.9) {6.99, -4.99}, (14.1) 12 

{1.24, -9.47}, (16.9) {-2.00, -8.99}, (14.6) 11 

Minimizing the Ackley Function Using SQP: 

Global Minimum at {0,0} 

		

F(r)= -20	exp(-0.2 0.5(r
1

2 + r
2

2))

-exp(0.5(cos(2pr
1
)+cos(2pr

2
)))+20+	e

F(0)= 0



Test Case 2 Solved via PSO 

		

min
rÎW

	F(r)= -20	exp(-0.2 0.5(r
1

2 + r
2

2))-exp(0.5(cos(2pr
1
)+cos(2pr

2
)))+20+	e

W = [-32.768,	32.768]´[-32.768,	32.768]



Evolutionary Algorithms & Metaheuristics Advantages and Disadvantages 

• Advantages 

  Straightforward (possibly most-straightforward) to code 

  Don’t need to know optimal control theory; don’t need possibly difficult 

     analytical differentiation  

  Requires no initial guess; the initial population is chosen randomly 

  More likely than other methods to locate the global minimum 

 

• Disadvantages 

  The problem needs to be parameterized by a (relatively) small 

     number of variables. 

  The methods depend on a number of user-selectable parameters and it is not 

     a priori clear how these are chosen for a successful or efficient solution.   

  Likely to need explicit numerical integration of the EOM, which can be  

     time-consuming 

  The solution will not be as accurate as that of the COV necessary conditions 

     or a DT solution 

  Constraints need to be included via a penalty function method and this is      
    especially problematic for equality constraints 

 



Example: Max-Radius Orbit Transfer Using Solar Sail Solved Using PSO 

 

Objective is to determine the solar sail 

orientation history (the control) in order to 

transfer the vehicle from a specified initial  

circular orbit to the largest possible coplanar 

circular orbit in a fixed time  

 

r = vr ,       r(0) = 1
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Subject to: t f = 450 days

Pradipto Ghosh, Ph. D. candidate, Univ. of Illinois 2013 



Example: Max-Radius Orbit Transfer Using Solar Sail Solved Using PSO (2) 

 

The solution for    (t) was approximated as a sum of 7 quadratic splines. 

The order of the spline ps,k is determined according to the “degree-parameter” ms,k, 

which decides the B-spline degree of the sth control in the kth phase in the 

following fashion: 

 

 

 

 

 

The optimal values for the 7 coefficients are found using PSO.  

 

  

a



Example: Max-Radius Orbit Transfer Using Solar Sail Solved Using PSO (3) 

 
The PSO solution is then used as the initial guess for a more-accurate 

solution using a direct approach (GPM) with NLP solver SNOPT.  

 

The results are compared in these figures. 

 



So What is the Best Solution Method? 

The answer is definitely problem-dependent, with the most important 

consideration being (in my judgment) whether the trajectory uses impulsive 

thrust or low-thrust (electric) propulsion. 

 

The impulsive case, even with planetary flybys, is a parameter optimization 

problem and can be solved very efficiently using metaheuristics, esp. PSO or 

GA + PSO. 

 

The low-thrust case is a continuous optimization problem. It must somehow be 

converted into a parameter optimization problem. The resulting problem is 

usually orders of magnitude larger than that of the impulsive case. 

 

My work (with many students) in recent years suggests that for trajectories that 

include low-thrust arcs the best approach is an Metaheuristic Algorithm alone 

or in combination with a Direct Transcription method. 

 

An example is the immediately preceding solar sail trajectory problem. Note 

that the PSO solution is very good and the direct solver converges very quickly 

using the PSO solution as an initial guess!  

 

  



Why? 

•  Both Hamiltonian (COV-based) methods and DT methods require an “initial 

guess”. This is often problematic.  

 

         Approximate solution obtained with EA’s or heuristics can become the 

initial guess for a more-accurate COV-based or DT solution. 

 

•   Both Hamiltonian methods and DT methods are local.  

 

         Heuristic methods are much more likely to find a global minimum. 

 

•   For the special case of mission planning problems, a successful solution 

strategy has been a outer-loop solver/inner-loop solver.  

      

        The outer-loop solver chooses the discrete decision parameters and is well 

suited to a GA.  

 

•  As a “bonus”, heuristic solutions are much easier to program, e.g. they need 

no gradient or Jacobian information. 

  

 

Þ

Þ

Þ



Lecture 2: Methods for Optimizing Interplanetary Trajectories II / 

               Application to the Problem of NEA Deflection       

 

        

 

 

Metaheuristic methods for solution of optimal spacecraft trajectory problems: as initial guess 

for a more precise method or as solution in own right 

 

Need different approaches for “naturally discrete” problems/ continuous-thrust problems 

 

Examples 

  

Proposed methods of asteroid deflection: collision, nuclear explosion, mass drivers,  

gravity tractor. Advantages and disadvantages. 

 

The objective: maximizing deflection (easy) vs. maximizing displacement from Earth 

surface (complicated) 

 

Using the state transition matrix to optimize deflection via collision 

  



Conversion of the Optimal Control Problem for Solution via EA 

Using a EA requires that the problem be formulated as a “few parameter”  

problem in contrast to direct transcription formulations in which there are 

100’s to several 1000’s of decision parameters. 

 

All space trajectory problems are continuous, but the associated optimal control  

problem may be discrete or continuous. 

 

     “Naturally Discrete” Cases       Continuous        Discrete Cases 

 

 Hohmann transfer          Low-thrust transfers 

 

          Lambert problem transfer  Impulsive + low-thrust transfers         

   

       Multiple Gravity Assist (MGA)        Lyapunov periodic orbits 

  

Þ



 

 

 

 

 

 

 

 

 

 

 

 

Example: Hybrid Optimal Control Using Nested Loops – Minimum-Fuel 

Interplanetary Trajectory with Flybys and Deep Space Maneuvers 

 

          

Jacob Englander, Ph. D. thesis 2013 

The problem is formulated as a hybrid optimal control problem (HOCP). 

 

No a priori information about the solution is provided, only a range of dates is 

given for departure from Earth and arrival at the target planet. 

 

An outer-loop solver determines the optimal number and sequence of flybys. Each 

planet in the solar system is given a number (Mercury = 1 … Neptune = 8; 0 and 

9-15 are null codes). A binary GA determines the prospective sequences; e.g. 

[ 2  3  11 15  5  9  12] would be an Earth departure followed by flybys at Venus 

(2), Earth (3) and Jupiter (5) then arrival at the target planet. The null codes allow 

as many as 7 flybys in the mission. 

 

For each sequence an inner-loop solver, using differential evolution (DE), 

determines the optimal parameters: dates of all important events, flyby periapse 

radii; locations and directions of deep space maneuvers.  

 

The optimal cost from the inner-loop solution is returned to the outer-loop GA. 

The GA then quickly identifies poorly-performing sequences. 



Example: Hybrid Optimal Control Using Nested Loops – Minimum-Fuel 

Interplanetary Trajectory with Flybys and Deep Space Maneuvers (2) 



 

 

 

 

 

 

 

 

 

 

 

 

Example: Hybrid Optimal Control Using Nested Loops – Minimum-Fuel 

Interplanetary Trajectory with Flybys and Deep Space Maneuvers (3) 

 

          



Example: Hybrid Optimal Control Using Nested Loops – Minimum-Fuel 

Interplanetary Trajectory with Flybys and Deep Space Maneuvers (4) 

 

Parameter Upper Bound Lower Bounds 

Launch Date User defined User defined 

Stay time between journeys User defined User defined 

Right Ascension of Launch Asymptote 0.0 2π 

Declination of Launch Asymptote User defined User defined 

v∞  at launch 0.0 User defined 

For each phase: 

Flight Time 

repeated flyby of same planet T/2 5T 

outermost body has a < 2 AU 0.1 min (T1, T2) 1.5 max (T1, T2) 

outermost body has a ≥ 2 AU max (T1, T2) 

Maximum of 600 days Minimum of 1000 days 

Burn index η 0.1 0.9 

B-plane insertion angle γ -π π 

rocky planets 1.05 times radius of planet 10 times radius of planet 

gas giants 1.05 times radius of planet 300 times radius of planet 

Automated Choice of Parameter Bounds for DE Solver 



Example: Hybrid Optimal Control Using Nested Loops – Minimum-Fuel 

Interplanetary Trajectory with Flybys and Deep Space Maneuvers (5) 

 

Sequence Cost (km/s) 

EVVEJS 1.01 

EVVES 2.31 

EEVVES 2.49 

EMEJS 2.64 

EEMES 3.09 

EVMES 3.13 

EVEES 3.19 

EVES 3.19 

EMES 3.23 

EMVVES 3.30 

EMVJS 3.39 

EVEJS 3.39 

EVVJS 3.49 

EVMVES 3.65 

EEVMES 3.75 

EVMEES 3.83 

EEVVEJS 3.99 

EVVVES 4.04 

EEVES 4.09 

EVVVEJS 4.10 

The 20 best sequences found by the outer-loop 

GA (in 46 hours on Intel Core i7) 



 

 

 

 

 

 

 

 

 

  Comparison of the optimal solution and the actual Cassini mission 

 

 

 

Example: Hybrid Optimal Control Using Nested Loops – Minimum-Fuel 

Interplanetary Trajectory with Flybys and Deep Space Maneuvers (6) 

 

          

  Itinerary found by the optimizer for the Cassini MGA-DSM mission. 

Event 
Optimal MGA-1DSM 

Solution 
Actual Cassini 

Mission 

Launch 10/22/1997 10/15/1997 

Venus flyby 1 5/3/1998 4/26/1998 

Venus flyby 2 6/23/1999 6/24/1999 

Earth flyby 8/17/1999 8/18/1999 

Jupiter flyby 1/15/2000 12/30/2000 

Saturn orbit insertion 10/22/2004 7/1/2004 

Cost 1010 m/s 1079 m/s 



Example: Hybrid Optimal Control Using Nested Loops – Minimum-Fuel 

Interplanetary Trajectory with Flybys and Deep Space Maneuvers (7) 

 



Conversion of the Continuous Optimal Control Problem for Solution via EA 

 
 Problems that are not “naturally discrete”, e.g. problems using low-thrust 

propulsion, must be recast as depending on a small number of decision 

parameters. There are a number of ways to accomplish this: 

 

i) The thrust magnitude and thrust pointing time histories can be described by 

polynomials, splines, or Fourier series. The decision parameters are then the 

 coefficients. Optimal solar sail control example. 

 

ii) The arcs during which thrust is applied can be modeled using “shape- 

         based” methods in which a GA chooses the optimal parameters describing the 

shape. Optimal NEA deflection via impactor example. 

 

iii)    The Sims-Flanagan approximation can be used. In this approximation a  

         continuous thrust arc is modeled as a sequence of discrete, small  

         Bepi Columbo-like mission  

iv)    The problem can be formulated using a Hamiltonian method so that 

         the unknowns become unknown initial values of the Lagrange multipliers 

(costates) of the problem. The states are then found by numerical integration 

and the control is found using Pontryagin’s principle. Low-thrust circle-circle 

      rendezvous example. 

DV 's



Multiple Gravity Assist with Low Thrust (MGA-LT) 

• Break mission into phases. Each phase starts and ends at a body. 

• Sims-Flanagan Transcription 

– Break phases into time steps 

– Insert a small impulse in the center of each 

 time step, with bounded magnitude 

– Optimizer Chooses: 

• Launch date 

– For each phase: 

» Initial velocity vector 

» Flight time 

» Thrust-impulse vector at each time step 

» Mass at the end of the phase 

» Terminal velocity vector 

• Propagate forward and backward from phase endpoints to a “match point”  

• Enforce nonlinear state continuity constraints at match point 

• Enforce nonlinear velocity magnitude and altitude constraints at flyby 



Example of MGA-LT: “BepiColombo”- like Mission 

 

• Objective is to travel from Earth to Mercury (within a specified range of dates)  

      and maximize payload delivered. 

 

• “Outer-loop” GA chooses number and sequence of planetary flybys 

 

• “Inner-loop” trajectory optimizer first uses monotonic basin hopping (MBH) 

      a heuristic method, to find an approximate solution to be used as an initial guess. 

 

• The problem parameters are the launch date, the time of flight, the magnitude and 

direction of the departure impulse at Earth, and then all of the Sims-Flanagan  

      parameters that describe each thrust arc (shown in the previous slide).  

      There are 191 decision variables and 95 constraints 

 

• Then a direct solver using NLP (SNOPT) finds an accurate solution using the MBH 

solution as its initial guess. 

 



Example of MGA-LT: “BepiColombo”- like Mission 

Problem Assumptions 

Objective: maximize mass delivered to Mercury 

No other information is supplied by the user 

Option Value 

Arrival type intercept (match position) with bounded v∞ 

Maximum arrival v∞ 0.5 km/s 

Launch window open date  8/1/2009 

Launch window close date 4/27/2012 

Flight time upper bound 15 years 

Propulsion type  Fixed Isp and thrust 

Thrust (N) 0.34 

Isp (s)  3200 

Initial mass (kg) 1300 

Maximum ΔvLV (km/s)  1.925 

Number of time steps per phase  10 

Maximum number of Flybys 8 

GA Population Size 100 

Inner-Loop run time per sequence  2 hours 



Example of MGA-LT: “BepiColombo”-like Mission  

Best 20 Solutions Found by the GA 

Sequence Final Mass (kg) 

EEVVYY 1112 

EVVYY 1077 

EEEVVYY 1077 

EEVVVYY 1076 

EEVYYY 1061 

EEVYY 1045 

EMVVYY 1038 

EEVVY 1030 

EEEEVYY 1030 

EEEVYY 1026 

EEVY 1024 

EVVY 1020 

EEVEVYY 1013 

EVVVY 1006 

EVYY 998 

EMEVVYY 972 

EVYYY 970 

EVY 964 

EEYYY 937 

EMEVY 930 



Example of MGA-LT: “BepiColombo”-like Mission Trajectory 



Example of MGA-LT: “BepiColombo”-like Mission Itinerary 

Date Event Location Mass (kg) Flyby altitude (km) 

9/26/2011 launch Earth 1300 - 

8/3/2016 flyby Earth 1272 21945 

10/7/2017 flyby Venus 1272 3895 

2/19/2019 flyby Venus 1272 303 

4/10/2021 flyby Mercury 1159 122 

5/23/2022 arrival Mercury 1112 - 

Yam et al found a best cost of 1064 kg for an EVVYYY sequence 

 



Methods Suggested for Asteroid Deflection 

Method Impact 

 

Nuclear  

Explosion 

 

Gravity 

Tractor 

Yarkovsky  

Effect 

Surface  

Mass Driver 

Interception          X                  

Rendezvous          X                                X         X                              X 

Impulsive or 

Low-Thrust 

Either or 

Both 

Either or 

Both 

 

Either or 

Both 

 

Either or 

Both 

 

Either or 

Both 

 

Planetary  

Flybys 

  Possibly   Possibly 

 

  Possibly 

 

  Possibly 

 

  Possibly 

 

Effect Sudden   Sudden    Slow    Slow    Slow 



Advantages & Disadvantages 

Method Impact 

 

Nuclear  

Explosion 

 

Gravity 

Tractor 

Yarkovsky  

Effect 

Surface  

Mass Driver 

Comparatively  

simple 
         X                         X 

Precisely 

controllable 

                                      X                                          X 

Requires  

large masses 

        

        X 

 

        X 

Result requires 

asteroid 

characterization 

  Possibly     

        X 

 

        Possibly 

 

Mass used 

efficiently 

 

       X 

  

        X 

        

        X 

    



Kinetic Impactor Dynamics 

Conservation of momentum: 

 
 

Note that since        is very small relative to       , the applied 

       will be small, on the order of mm/s 
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Problem Definition 

• Objective:  Using a kinetic impactor, maximize the distance by which the asteroid 

misses the earth 

• This is not necessarily the same thing as maximizing the deflection distance or the 

asteroid’s orbital energy! 

Direction of largest 

 miss distance 

Direction of largest 

possible deflection 



Kinetic Impactor Dynamics – The State Transition Matrix 
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The unperturbed asteroid’s position on the 

date of close approach is known. 

 

The asteroid is perturbed by the kinetic 

impactor, and the state transition matrix is 

solved analytically to find the difference 

between the asteroid and its unperturbed 

reference position on the date of close 

approach. 

 

The longer the asteroid coasts after 

receiving impulse from the interceptor, the 

more it will deviate from its reference 

course.  Thus, in general, the earlier the 

interceptor hits the asteroid, the farther 

away the asteroid will pass the Earth. 



Maximization of the Deflection via Nuclear Impulse (1) 

The state transition matrix                   determines the perturbation in position  

and velocity: 
F( t, t0)

dr

dv

 = F( t, t0) 
dr0

dv0

 = 
R R

V V

 
dr0

dv0

Therefore: 

dr(t) = R dv0(t0)

where t is the time of close approach and  t0 is the time of interception, where  

G = 1
m

  
r r0

p
 sinq

F = 1 - r
p (1 - cosq) , cosq = 

 r ×  r0

r r0

R  = 
r0

m
 (1 - F) (r - r0)v0

  T - (v - v0)r0
  T  + C

m
 v v0

  T + G I



C = 1
m

 3 U5 - c U4 - m  (t - t0) U2

c = a (E - E0)

and 

where 

and  

U1(c, a), U2(c, a), U3(c, a), U4(c, a), U5(c, a)

are the “Universal Functions” (cf. Battin’s book), where  

Maximization of the Deflection via Nuclear Impulse (2) 

a = 1/ a



 Want maximum deflection at close approach time t, i.e. max  dr(t)  = max  R  dv0

 This is equivalent to maximizing dv0
T R  T R  dv0

This quadratic form is maximized, for given           , if          is chosen parallel 

 

to the eigenvector of                   conjugate to the largest eigenvalue of               . 

 

dv0 dv0

R  T R  R  T R  
 

This yields the optimal direction for the perturbing velocity impulse          ,  

(in the space-fixed XYZ basis). 

 

dv0

 
Can then express  dv0

 
in asteroid-fixed radial, transverse, normal basis as 

dv0 RTN = 

cqcW - cisWsq cqsW + cicWsq sisq

-sqcW - cisWcq -sqsW + cicWcq sicq

sisW -sicW ci

 dv0 XYZ

 

Maximization of the Deflection via Nuclear Impulse (3) 



Maximization of the Miss Distance from Earth Surface (1) 
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Asteroid trajectory

As shown in a previous slide, maximizing  

deflection magnitude is straightforward, 

using the system state transition matrix. 

 

However the real objective is to maximize 

the miss distance altitude, which is the  

same as maximizing the miss distance 

radius (from the center of the Earth). 

 

This is accomplished by maximizing the  

perigee radius of the asteroid’s  

hyperbolic flyby. 



Maximization of the Miss Distance from Earth Surface (2) 
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Then, the miss distance from the Earth’s center may be found as: 

It is first necessary to determine the heliocentric position and velocity at 

entry onto the Earth arrival hyperbola: 

where 

where 



Lecture 3: Asteroid Deflection/ Characterization by Sample Return 

       

 

        

 

 

Optimizing asteroid deflection (magnitude) via nuclear explosion using a low-thrust 

spacecraft 

 

Optimizing asteroid deflection (from Earth surface) via collision using a low-thrust 

spacecraft 

 

Optimizing a manned reconnaissance/sample return mission to an asteroid 

  

Examples and results 

 



Example: Deflection of PHA Using Nuclear Impulse and a Low-Thrust Spacecraft 

• Simulation assumes use of current technology 

• Low-thrust propulsion is used because of its great efficiency 

• It is assumed that the nuclear explosion can be exploded at the moment of close 

approach, i.e. rendezvous is not required 

• It will be shown that use of low-thrust electric propulsion yields a dramatic  

      increase in payload delivered to the asteroid 

• The problem is formulated using the Gauss variational equations in (singularity- 

      - free) equinoctial elements: 

 

  

• The optimal control problem is constructed using a direct transcription method 

      (collocation with 5th degree Gauss-Lobatto defects) and solved using a NLP 

      problem solver (NPSOL). 

• The control variables are the in-plane (azimuthal) thrust pointing angle and the out-of 

      plane thrust pointing angle. The optimizer may also choose the direction of the  

      hyperbolic departure from Earth. 

 

a,  P1 = esinv ,  P2 = ecosv ,  Q1 = tan
i

2
sinW,  Q2 = tan

i

2
cosW,  L



 “Independence” of Trajectory and Deflection 

In principle 

 

 The solution to the “complete” problem involves finding optimal 

 values (or time histories) of all free parameters, from Earth departure 

 to interception, e.g. optimal departure point in Earth orbit, departure  

 direction, optimal thrust pointing history, arrival date, direction of 

 application of impulse, etc.  

But 

 

 The locus of points where a deflection impulse can be applied is  

 the asteroid orbit!  

 

 So best direction of application of impulse and resulting maximum 

 deflection can be found independently of the interception trajectory! 

 

However 

 It is still necessary to intercept the asteroid optimally – an optimal low-thrust 

 trajectory is found to each candidate interception point. 

 

 



Initial Condition Constraints 

 The initial condition constraints yield the following 6 scalar equations: 

  

 

aE cos qE - 
r cos L + ( Q2

2  - Q1
2 ) cos L + 2 Q1 Q2 sin L

1 + Q2
2  + Q1

2 
  = 0 

aE sin qE - 
r sin L - ( Q2

2  - Q1
2 ) sin L + 2 Q1 Q2 cos L

1 + Q2
2  + Q1
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  = 0

 
2r  Q2 sin L - Q1 cos L  

1 + Q2
2  + Q1
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  = 0        

 

 

 
m/p sin L + ( Q2
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-vE sin qE + v¥/E cos g0 sin (b0 - qE) = 0 
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+vE cos qE + v¥/E cos g0 cos (b0 - qE) = 0 
 

 

  
2 m/p  Q2 cos L +  Q1 sin L - P2 + P1Q1 +  Q2 P2

1 + Q2
2  + Q1

2 
 - v¥/E sin g0 = 0 

   

where all unsubscripted variables and elements refer to the orbit of the  

interceptor spacecraft, qE is the true longitude of the Earth, vE is  

the circular velocity of the Earth and all quantities are evaluated at t = 0.  
 

 



The terminal constraint yields the following 3 scalar 

 equations: 

 

rA[cos qA cos WA - cos iA sin WA sin qA] - 
r cos L + (Q2

2  - Q1
2 ) cos L + 2Q1 Q2 sin L

1 + Q2
2  + Q1

2 
  = 0 

rA[cos qA cos WA - cos iA sin WA sin qA] - 
r sin L - (Q2

2  - Q1
2 ) sin L + 2Q1 Q2 cos L

1 + Q2
2  + Q1

2 
  = 0

rA sin iA sin qA -  
2r  Q2 sin L - Q1 cos L  

1 + Q2
2  + Q1

2 
  = 0                                                (12)        

 

 

where all unsubscripted variables refer to the orbit of the 

interceptor spacecraft and all quantities are evaluated at tFinal. 

 
 
 

Terminal Constraints (Interception) 



Orbit of Asteroid 1991RB: 

a = 1.4524 AU
e = .4846

i = 19.578 °

W = 359.738°

w = 68.703 °

M = 225.871°

At epoch 3/18/1998 

Asteroid 1991RB had a close approach to Earth of .0401 AU (= 15.62 Lunar 

Distances) on 9/18/1998. 

Target is Asteroid 1991RB  



A Sample Trajectory 

Example trajectory: launch 6 months before close approach; interception 38 days  

                                before close approach  



History of the Thrust Pointing Angles for Interception of 1991RB 
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Direction of Optimal Nuclear Deflection Impulse 











Advantage of Interception Using Low-Thrust (1) 

Compare propellant and structural mass fractions required to intercept 

asteroid, in same time-of-flight, for impulsive case vs. using low-thrust 

 electric propulsion. 

Uses results from a typical case. 

 

Problem: Find        required to take spacecraft from given       to       in  

               flight time tF = 2.5096 units = 145.89 days.    

Method: This is a “Lambert” problem. Solve Lambert’s time-of-flight equation 

               for the semimajor axis of the elliptical section connecting the given points 

               in the specified time. 

 

Result: Trajectory has a = 1.31973 AU ; can solve for absolute velocity at  

            departure yielding   v1 =  .0931, -1.040, -.3883

Velocity at escape from Earth is  

Difference is required  

vEarth + v¥ =  -.0241, -1.008, -0.020

DV = .069, -.032, -.368

DV r1 r2



Advantage of Interception Using Low-Thrust (2) 

 

Then     

For a optimal two-stage chemical rocket, with (good) Isp = 375 sec, 

and structural coefficient of 0.12 for each stage: 

1st stage mass = 70.53 x payload mass 

2nd stage mass = 7.91 x payload mass 

thus, propellant required is 88% of rocket mass or 69.0 x payload mass. 

For the low-thrust (electric) motor, with Isp = 4000 sec, of case N, final 

thrust acceleration is .191, initial thrust accel. is .14  = .83 mN/kg thus, 

i.e., fuel mass is 27% of payload mass (assuming structural coefficient            )  

DV = .414 in normalized units

= 12.32 km/sec           

m0

m0 - mfuel
 = final acceleration

initial acceleration
 = .191

.140
 = 1.364

Payload mass is approximately 1-3% of mass at departure! 

Present ion propulsion technology requires 1.4 kg propulsion hardware/mN thrust. 

Near-term improvement expected to 0.7 kg/mN. Thus total propulsion system mass 

is .83mN(.7kg/mN) + .27kg fuel + .03 kg tank = .88kg/kg. So payload mass is  

   approximately 12% of mass at departure! 

e = 0.1



Example: Deflection of PHA Using Impact and a Low-Thrust Spacecraft 

J. Englander M.S. thesis, Univ. of Illinois (2008) 

 

Objective is to find a low-thrust trajectory for a spacecraft whose impact is to  

maximize the subsequent deflection distance when the asteroid approaches the Earth. 

 

Launch vehicle upper stage applies a departure impulse in low Earth orbit. The amount 

of fuel used for this purpose (at lower Isp) is chosen by the optimizer. Then the 

spacecraft engages a low thrust electric motor and travels to the asteroid. 

 

The time histories of thrust magnitude and steering angle (the two continuous controls) 

must be found to optimally guide the spacecraft to the asteroid. 

 

An approximate optimal (and feasible) solution is found with a GA using a “shape-

based” representation of the trajectory. The GA has 9 free parameters: it uses 50 

generations with a population n = 50. 

  

The solution from the GA is then used to initialize a much more accurate solution using 

a direct transcription method (Runge-Kutta parallel shooting) and a NLP problem solver 

(SNOPT) 

 

 

 

 

    
 

 

 



The Asteroid 

• Hypothetical asteroid based on 99942 Apophis impacts Earth on April 13th, 2029 
(Apophis will miss Earth by 32000 km) 

 

• Same mass as 99942 Apophis ( ~4.6 x 1010 kg) 

 
Orbit elements , April 13th, 2021 (very slightly modified to yield impact rather 

than a 32000 km miss): 

 

a = 0.9214 AU 

e = 0.1957 

i = 3.42o 

ω = 126.62o 

Ω = 203.79o 

f = 231.54o 

 

 

3000 km 

Earth center of mass 

Nominal impact point 



Assumptions 

• Spacecraft is launched on Delta IV Heavy 

 

• Delta IV heavy can place 25000 kg in 300km altitude LEO parking orbit, including 
spacecraft, fuel, and launch vehicle upper stage dry mass 

 

• Upper stage engine has Isp = 462s (RL-10) 

 

• Low thrust electric motor (same as Dawn, DS-1) has Isp = 3100s, thrust = 90mN 

– We mount two of these engines, for a total thrust of 180mN 

 

• Launch window opens April 13th, 2021 – 8 years before the 2029 impact 

 



The Optimal Trajectory Parameters Found via GA 

    GA parameters and their bounds     Optimal values of the GA parameters 



Shape-Based Approximation to Trajectory 
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The 9 GA parameters determine (among other things)                          and   
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Then the path is approximated parametrically as an inverse 6th degree polynomial: 

 

 

 

The seven coefficients a – g may be solved for using the 9 GA parameters directly 

and indirectly, e.g. it is obvious that r1 = 1/a. 

 

The thrust magnitude and flight path angle may be found a posteriori as 

 

 

 

 

 

 

For the 3D case need to also parameterize the vertical motion using:   



GA Convergence History 

equiv. to 30,967 km Þ

  

h =

NT
max

m
initial

æ

èç
ö

ø÷

G
average

J = -rmiss ×h

GA objective function is scaled by 

parameter h in order to penalize  

trajectories that need a thrust  

acceleration larger than what the 

vehicle can actually provide, i.e. 



Guess Trajectory (from GA) and Final Trajectory 

Initial guess of 3D trajectory from the GA       Converged NLP solution using this initial guess  



Converged Solution From NLP Solver 

• Departure: 13 April 2021 

 

  Consumes 15613 kg of propellant 

 

• Powered flight: Consumes 696 kg of propellant 

 

• Interception: 2 March 2023 

  Impact changes velocity of Apophis by 2.7 mm/sec 

 

• Deflection: 17041 km 

 

   

 

DV = 5.36 km / sec



 Optimal Control Time History 
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Example: Manned Asteroid Sample Return Mission with Time Constraint (1) 

Objective is to minimize ΔV for sample return mission with 8-25 day stay at asteroid 

and max 365 day total trip time. 

 

NEA catalog searched for candidates satisfying the following criteria: 

1. Allow departure dates between 2025 and 2035  

2. Are at least 30 m in diameter  

3. Allow 365 day round trip missions  

 

and are not limited by the following considerations: 

  

4. Uncertain orbit and/or limited Earth-based observation  

5. Few departure opportunities 

6. Likely too small based on estimated albedo (albedo assumed     

 to be between 0.05 and 0.25)  

Aishwarya Stanley, M.S. thesis 2013 



Example: Manned Asteroid Sample Return Mission with Time Constraint (2) 

Lambert’s method is used to find the ΔV’s required for Earth departure, asteroid 

interception, asteroid departure, and Earth arrival. 

 

The only free parameters are the four dates of those events. 

 

NASA researchers had used a brute force approach, generating tens of thousands  

(hundreds of thousands?) of missions for each asteroid for various values of each of 

those 4 dates. 

 

Our research used PSO to determine the optimal mission. 

 

A penalty function is used to limit total flight time to 365 days. 



Example: Manned Asteroid Sample Return Mission with Time Constraint (3) 



Example: Manned Asteroid Sample Return Mission with Time Constraint 


