## Southamplon

## Stardust OTS Rotational Dynamics and Attitude Control

## Contents

## Southampton

Introduction<br>Basic motion<br>The Attitude Control Subsystem<br>Rotational dynamics<br>ACS for Rendezvous<br>Rendezvous<br>Conclusions

## Introduction

## Southampton

## Aim of lectures

- To discuss and reinforce the concepts of rotational dynamics and angular momentum in general
- Discuss these concepts when applied to an active debris removal mission
- To provide a greater understanding into the requirements of the attitude and orbit control systems of a chaser spacecraft and its effect on the satellite design.


## Basic motion

## Southanmpton

Consider a body in orbit (with no disturbances)...


Naturally occurring (disturbance) torques:

- Aerodynamic <~ 500 km
- Magnetic $\sim 500-35$,000 km
- Solar radiation >~600-700 km
- Gravity gradient ~500-10,000 km


Note that: the altitude ranges given are very approximate
'SeaSat' - Example of satellite affected by gravity gradients

## The Attitude Control Subsystem (ACS*)

## Southampton

Prime purposes:

- To achieve the pointing requirements of the payload
- directions and accuracy
e.g. Antennas - Earth pointing, say, or

Telescopes - diverse directions etc

- To achieve the pointing requirements for 'house-keeping'
- in all phases of the mission
e.g. Power-raising - Sun-pointing

Communications - Earth-pointing
Thermal - Deep space
Orbit change thruster - as required

- To manage the (angular) momentum
${ }^{*}$ Note that: this subsystem is often referred to as the Attitude and Orbit Control Subsystem (AOCS)


## Rotational dynamics

## Southampton

Linear Momentum

- a 'stepping-stone' to translational/orbit dynamics


Newton's second law:

$$
\frac{d}{d t}(\mathbf{L})=\frac{d}{d t}(M \mathbf{v})=\sum \mathbf{F}_{e x t}
$$

Free Motion:
No Force, $\sum \mathbf{F}_{\text {ext }}=\mathbf{O} \Rightarrow$ Momentum $\mathbf{L}$ is constant

## Rotational dynamics

Angular momentum - Inertia, one dimension


Is the angular momentum the same?

## Rotational dynamics

## Southampton

Angular momentum - Rotational vectors
For this one dimensional motion:


Newton's second law:

$$
\frac{d}{d t}(\mathbf{H})=\frac{d}{d t}\left(I_{x x} \boldsymbol{\omega}\right)=\sum \mathbf{T}_{e x t}
$$



Free Motion:
No torque, $\sum \mathbf{T}_{e x t}=0 \Rightarrow$ Momentum $\mathbf{H}$ is constant

## Rotational dynamics

## Southampton

Angular momentum
In three dimensions:

$$
\boldsymbol{\omega}=\left(\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right)
$$



Angular momentum:


## Rotational dynamics

## Southampraton

## Angular momentum

Angular momentum of a rigid body such as the main structure of a spacecraft is:

$$
\mathbf{H}_{C}=\mathbf{I}_{\swarrow} \boldsymbol{\omega}
$$

Inertia matrix referred to the centre of mass ' $C$ '

Newton's second law:

$$
\frac{d}{d t}\left(\mathbf{H}_{C}\right)=\frac{d}{d t}\left(\mathbf{I}_{C} \boldsymbol{\omega}\right)=\sum \mathbf{T}_{e x t}
$$

Free Motion:
No torque, $\sum \mathbf{T}_{\text {ext }}=0 \Rightarrow$ Momentum $\mathbf{H}$ is constant

## Rotational dynamics

## Southampraton

The inertia matrix
The inertia matrix referred to the centre of mass:

$$
\begin{aligned}
\mathbf{H}_{C}= & \mathbf{I}_{C} \boldsymbol{\omega} \\
& \bigsqcup_{C}=\left(\begin{array}{ccc}
I_{x x} & -I_{x y} & -I_{x z} \\
-I_{x y} & I_{y y} & -I_{y z} \\
-I_{x z} & -I_{y z} & I_{z z}
\end{array}\right)
\end{aligned}
$$


$I_{x x}, I_{y y}, I_{z z}$ are Moments of Inertia
$I_{x y}, I_{y z}, I_{z x}$ are Products of Inertia
Products of inertia are a measure of unbalance, and cause 'cross-coupling'

## Rotational dynamics

Angular momentum components

$$
\begin{gathered}
\mathbf{H}_{C}=\mathbf{I}_{C} \boldsymbol{\omega} \\
\mathbf{H}_{C}=\left(\begin{array}{ccc}
I_{x x} & -I_{x y} & -I_{x z} \\
-I_{x y} & I_{y y} & -I_{y z} \\
-I_{x z} & -I_{y z} & I_{z z}
\end{array}\right)\left(\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right)
\end{gathered}
$$

So the components of the angular momentum vector are:

$$
\mathbf{H}_{C}=\left(\begin{array}{l}
\left(I_{x x} \omega_{x}-I_{x y} \omega_{y}-I_{x z} \omega_{z}\right) \\
\left(I_{y y} \omega_{y}-I_{y z} \omega_{z}-I_{x y} \omega_{x}\right) \\
\left(I_{z z} \omega_{z}-I_{x z} \omega_{x}-I_{y z} \omega_{y}\right)
\end{array}\right)
$$

## Rotational dynamics

## Southampton

The inertia matrix
Moments of inertia:

$$
I_{x x}=\int\left(y^{2}+z^{2}\right) d m
$$

Where the integral extends over the whole mass distribution

Products of inertia:
The product of inertia associated with the x -
 axis is:

$$
I_{y z}=\int y z d m
$$

Generally these values are based on standard shapes with known formulae

## Rotational dynamics

The inertia matrix

$$
\mathbf{I}_{C}=\left(\begin{array}{ccc}
I_{x x} & -I_{x y} & -I_{x z} \\
-I_{x y} & I_{y y} & -I_{y z} \\
-I_{x z} & -I_{y z} & I_{z z}
\end{array}\right)
$$

Therefore for a single particle of mass around point C:

$$
\mathbf{I}_{C m}=\left(\begin{array}{ccc}
m\left(y^{2}+z^{2}\right) & -m x y & -m x z \\
-m x y & m\left(x^{2}+z^{2}\right) & -m y z \\
-m x z & -m y z & m\left(x^{2}+y^{2}\right)
\end{array}\right)
$$

## Rotational dynamics

## Southampton

The inertia matrix - products of inertia
If there is a plane of symmetry, then the product of inertia associated with all axes in that plane will be zero. For example, an aircraft whose xz-plane is a plane of symmetry will have:


$$
I_{x y}=0 \quad I_{y z}=0
$$

If two of the co-ordinate planes are planes of symmetry, then all three of the products of inertia will be zero. This applies to axially symmetric bodies such as many expendable launchers.


## Rotational dynamics

## Southampton

## Useful Formulae

Transfer of reference point (parallel axis theorem)
If an object whose centre-of-mass $G$ is at $(X, Y, Z)$ has an inertia matrix $\left[I_{G}\right]$ referred to $G$, then add on the inertia matrix of its equivalent particle referred to $O$, in order to obtain the inertia matrix $\left[I_{0}\right]$ referred to parallel axes at $O$, that is:

$$
\left[I_{O}\right]=\left[I_{G}\right]+\left[I_{O M}\right]
$$

For a point mass/idealised component:

$$
\left[I_{C M}\right]=\left(\begin{array}{ccc}
M\left(y^{2}+z^{2}\right) & -M x y & -M x z \\
-M x y & M\left(x^{2}+z^{2}\right) & -M y z \\
-M x z & -M y z & M\left(x^{2}+y^{2}\right)
\end{array}\right)
$$



## Rotational dynamics

## Southampton

## Useful Formulae

Rotated axes theorem
If the components of a vector $\mathbf{V}$ in one set of axes are expressed as the terms in a ( $3 \times 1$ ) column matrix $\mathbf{V}_{1}$, say, and $\mathbf{V}_{2}$ consists of its components in a second set that rotated relative to the first, then $\mathbf{V}_{2}$ may be expressed as:

$$
\mathbf{V}_{2}=[R] \mathbf{V}_{1}
$$

Then $[R]$ is known as a rotation matrix.
The inertia matrix [I] can then be transformed between the same set of axes by using:

$$
\left[I_{2}\right]=\left[R\left[L_{1} I \mathbb{R}\right]^{\prime}\right.
$$

The rotation matrix can be constructed using Euler angles.

## Rotational dynamics

## Southampton

## Useful Formulae

Moment of inertia about a single arbitrary axis
If an inertia tensor is specified for the axes $\mathrm{x}, \mathrm{y}$ and z , the moment of inertia of the body about an inclined axis can be computed using:

$$
I_{O a}=I_{x x} u_{x}^{2}+I_{y y} u_{y}^{2}+I_{z z} u_{z}^{2}-2 I_{x y} u_{x} u_{y}-2 I_{y z} u_{y} u_{z}-2 I_{x z} u_{x} u_{z}
$$

For this calculation the direction cosines $u_{x}, u_{y}$ and $u_{z}$ of the axes must be determined. These numbers specify the cosines of the coordinate direction angles $\alpha, \beta$ and $\gamma$ made between the inclined axis and the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes respectively.

## Rotational dynamics

## Southampton

## Single Axis Example

Determine the moment of inertia of the bent arm shown about the Aa axis. The mass of each of the three segments is shown in the figure.

$I_{A a}=I_{x x} u_{x}^{2}+I_{y y} u_{y}^{2}+I_{z z} u_{z}^{2}-2 I_{x y} u_{x} u_{y}-2 I_{y z} u_{y} u_{z}-2 I_{x z} u_{x} u_{z}$

## Rotational dynamics

## Southampton

## Single Axis Example

Determine the moment of inertia of the bent rod shown about the Aa axis. The mass of each of the three segments is shown in the figure.


## Rotational dynamics

Single Axis Example
Moments and products of inertia of the solid cylinder segments


Products of inertia around CG:

$$
I_{x y}=I_{y z}=I_{x z}=0
$$ the CG the CG

Southanampton


Moment of inertia around axis running laterally through

$$
I_{x x}=I_{z z}=\frac{m l^{2}}{12}
$$

Moment of inertia around axis running axially through

$$
I_{y y}=\frac{m r^{2}}{2}
$$

## Rotational dynamics

Southanampton
Single Axis Example
Moment of inertia - $I_{x x}$

$$
\begin{aligned}
I_{x x} & =\left(I_{x x, 1}+m_{1} d_{1 x}^{2}\right) \text { Segment } 1-\mathrm{AB} \\
& +\left(I_{x x, 2}+m_{2} d_{2 x}^{2}\right) \text { Segment } 2-\mathrm{BC} \\
& +\left(I_{x x, 3}+m_{3} d_{3 x}^{2}\right) \text { Segment } 3-\mathrm{CD}
\end{aligned}
$$

$$
I_{x x}=\left(\frac{m_{1} l_{1}^{2}}{12}+m_{1} d_{1 x}^{2}\right)+\left(\frac{m_{2} r^{2}}{2}+m_{2} d_{2 x}^{2}\right)+\left(\frac{m_{3} l_{3}^{2}}{12}+m_{3} d_{3 x}^{2}\right)
$$

$I_{x x}=\left(\frac{(5)(2)^{2}}{12}+(5)(1)^{2}\right)+\left(\frac{(5)(0.05)^{2}}{2}+(5)(2)^{2}\right)+\left(\frac{(10)(4)^{2}}{12}+(10)\left((2)^{2}+(2)^{2}\right)\right)$
$I_{x x}=6.667+20.00625+93.333=120 \mathrm{kgm}^{2}$

## Rotational dynamics

$$
\begin{aligned}
I_{y y}=\left(\frac{m_{1} l_{1}^{2}}{12}\right. & \left.+m_{1} d_{1 y}^{2}\right)+\left(\frac{m_{2} l_{2}^{2}}{12}+m_{2} d_{2 y}^{2}\right) \\
& +\left(\frac{m_{3} r^{2}}{2}+m_{3} d_{3 y}^{2}\right)
\end{aligned}
$$

## Single Axis Example <br> Moment of inertia - $I_{y y}$



$$
I_{y y}=\left(\frac{(5)(2)^{2}}{12}+(5)(1)^{2}\right)+\left(\frac{(5)(2)^{2}}{12}+(5)\left((-1)^{2}+(2)^{2}\right)\right)
$$

$$
+\left(\frac{(10)(0.05)^{2}}{2}+(10)\left((-2)^{2}+(2)^{2}\right)\right)
$$

$$
I_{y y}=6.667+26.667+80.0125=113.35 \mathrm{kgm}^{2}
$$

## Rotational dynamics

## Southampton

Single Axis Example
Moment of inertia - $I_{z z}$
$I_{z z}=\left(\frac{m_{1} r^{2}}{2}\right)+\left(\frac{m_{2} l_{2}^{2}}{12}+m_{2} d_{2 z}^{2}\right)$

$$
+\left(\frac{m_{3} l_{3}^{2}}{12}+m_{3} d_{3 z}^{2}\right)
$$


$+\left(\frac{m_{3} l_{3}^{2}}{12}+m_{3} d_{3 z}^{2}\right)$

$I_{z z}=\left(\frac{(5)(0.05)^{2}}{2}\right)+\left(\frac{(5)(2)^{2}}{12}+(5)(1)^{2}\right)+\left(\frac{(10)(4)^{2}}{12}+(10)\left((-2)^{2}+(2)^{2}\right)\right)$
$I_{z z}=0.00625+6.667+93.333=100 \mathrm{kgm}^{2}$

## Rotational dynamics

Single Axis Example
Products of inertia

$$
\begin{aligned}
& I_{x y}=\left(I_{x y, 1}+m_{1} x_{1} y_{1}\right) \\
& \quad+\left(I_{x y, 2}+m_{2} x_{2} y_{2}\right) \\
& \quad \quad+\left(I_{x y, 3}+m_{3} x_{3} y_{3}\right)
\end{aligned}
$$

## Southampton



As all the elements are uniform solid cylinders their products of inertia around their CG is zero.

$$
\begin{aligned}
& I_{x y}=\left(m_{1} x_{1} y_{1}\right)+\left(m_{2} x_{2} y_{2}\right)+\left(m_{3} x_{3} y_{3}\right) \\
& I_{x y}=((5)(0)(0))+((5)(-1)(0))+((10)(-2)(2))=-40 \mathrm{kgm}^{2} \\
& I_{y z}=\left(m_{1} y_{1} z_{1}\right)+\left(m_{2} y_{2} z_{2}\right)+\left(m_{3} y_{3} z_{3}\right) \\
& I_{y z}=((5)(0)(1))+((5)(0)(2))+((10)(2)(2))=40 \mathrm{kgm}^{2}
\end{aligned}
$$

## Rotational dynamics

Single Axis Example
Products of inertia
Southamprstof


$$
\begin{aligned}
& I_{x z}=\left(m_{1} x_{1} z_{1}\right)+\left(m_{2} x_{2} z_{2}\right)+\left(m_{3} x_{3} z_{3}\right) \\
& I_{x z}=((5)(0)(1))+((5)(-1)(2))+((10)(-2)(2))=-50 \mathrm{kgm}^{2}
\end{aligned}
$$

## Rotational dynamics

Single Axis Example
Need to determine the direction cosines:

$$
\mathbf{r}_{A a}=-2 i+4 j+2 k
$$

## Southampion

$$
\left|\mathbf{r}_{A a}\right|=\sqrt{(-2)^{2}+(4)^{2}+(2)^{2}}
$$

$$
=4.899
$$



Unit vector in axis Aa:

$$
\begin{aligned}
\mathbf{u}_{A a} & =\frac{\mathbf{r}_{A a}}{\left|\mathbf{r}_{A a}\right|}=\frac{-2 i+4 j+2 k}{4.899}=-0.408 i+0.816 j+0.408 k \\
u_{x} & =-0.408 \quad u_{y}=0.816 \quad u_{z}=0.408
\end{aligned}
$$

## Rotational dynamics

## Southampton

Single Axis Example:

$$
I_{A a}=I_{x x} u_{x}^{2}+I_{y y} u_{y}^{2}+I_{z z} u_{z}^{2}-2 I_{x y} u_{x} u_{y}-2 I_{y z} u_{y} u_{z}-2 I_{x z} u_{x} u_{z}
$$

Moments of inertia

$$
I_{x x}=120 \mathrm{kgm}^{2} \quad I_{y y}=113.35 \mathrm{kgm}^{2} \quad I_{z z}=100 \mathrm{kgm}^{2}
$$

Products of inertia

$$
I_{x y}=-40 \mathrm{kgm}^{2} \quad I_{y z}=40 \mathrm{kgm}^{2} \quad I_{x z}=-50 \mathrm{kgm}^{2}
$$

Direction cosines

$$
\begin{gathered}
u_{x}=-0.408 \quad u_{y}=0.816 \quad u_{z}=0.408 \\
I_{A a}=(120)(-0.408)^{2}+(113.35)(0.816)^{2}+(100)(0.408)^{2} \\
-2(-40)(-0.408)(0.816)-2(40)(0.816)(0.408) \\
-2(-50)(-0.408)(0.408) \\
I_{A a}=42.2 \mathrm{kgm}^{2}
\end{gathered}
$$

## Rotational dynamics

## Southampton

The inertia matrix

[ $I$ ] is an important quantity when sizing up the control system inputs for any vehicle.

## Rotational dynamics

Properties of rotational motion - Gyroscopic Precession


## Rotational dynamics

## Southampton

Properties of rotational motion - Gyroscopic Precession


The rotational displacement occurs 90 degrees later in the direction of rotation.

## Rotational dynamics

## Southampton

Properties of rotational motion - Gyroscopic Precession


## Rotational dynamics

## Southampton

Properties of rotational motion
Momentum Bias/Gyroscopic rigidity
Momentum reduces sensitivity to torque

During $\delta t$, the momentum changes direction $\delta \psi$ from $\mathbf{H}_{\mathbf{o}}$ to $\mathbf{H}_{\mathbf{1}}$


## Rotational dynamics

## Southampton

Use of Momentum Bias
Momentum bias is a method commonly used to provide inherent stability. However, there are consequences of doing so...

- to use momentum bias, it is desirable that one body axis of the spacecraft remains invariantly pointing (usually perpendicular to the orbit plane)
- bias introduces an oscillatory nutation mode
- a system with bias will have different torque responses


## Rotational dynamics

## Southampton

Use of Momentum Bias - Torque responses
Torque response without bias


Torque response with bias


## Rotational dynamics

Satellite Stabilisation Types:
Spacecraft


## Rotational dynamics

## Southampton

## Momentum Management

- The ACS must 'manage' the momentum H of the spacecraft using control torquers to do so.

- This can be achieved using the principles of:

Conservation of momentum - the storage/transfer of momentum

$$
\left(\Sigma \mathbf{T}_{\text {ext }}=\mathbf{0} \Rightarrow \text { Momentum } \mathbf{H} \text { is constant }\right)
$$

Newton's second law - by applying a torque to the satellite

$$
\left(\Sigma \mathbf{T}_{\text {ext }} \neq \mathbf{0} \Rightarrow \text { Momentum } \mathbf{H}\right. \text { changes in magnitude/direction) }
$$

## Rotational dynamics

## Southampton

## Categories of Torques

External torques

- due to reactions with the environment
- i.e. a torque is applied which changes the total angular momentum of the satellite

Internal torques

- due to reactions between two parts of the spacecraft
- by definition no external torque is applied, therefore the total angular momentum is conserved


## Rotational dynamics

External torques/torquers
Naturally occurring (disturbance) torques:

- Aerodynamic <~ 500 km
- Magnetic ~500-35,000 km
- Solar radiation $>\sim 600-700 \mathrm{~km}$
- Gravity gradient ~500-10,000 km
(Thrust misalignment)
Controllable external torquers
- Gas jets
- Magnetorquers
- Adjustable geometry


## Rotational dynamics

## Southampton

Internal torques/torquers
Internal disturbance torques:

- Mechanisms - deploying solar arrays
- Fuel movement ('slosh')
- Astronaut movement

Controllable internal torquers (momentum stores)

- Reaction wheels
- Momentum wheels

As the ACS must 'manage' the momentum H of the spacecraft therefore one type of external torquer must be carried.

## ACS for Rendezvous

## Southampton

Prime purposes:

- To achieve the pointing requirements of the payload the capture and control the proposed target
- To achieve the pointing requirements for 'house-keeping'
- in all phases of the mission
e.g. Power-raising - Sun-pointing

Communications - Earth-pointing
Thermal - Deep space
Orbit change thruster - as required

- To manage the (angular) momentum
- The inertia matrix
- Choice of external torquers
- The use of spinning systems


## Rendezvous

## Southampton

Multiple Rigid Bodies


For the system: during a collision/separation:

- their total absolute linear momentum remains constant

$$
M \mathbf{v}_{C}=M_{1} \mathbf{v}_{1}+M_{2} \mathbf{v}_{2} \quad \text { remains constant }
$$

- their angular momenta referred to C remains constant, so

$$
\mathbf{H}_{C}=\left(\frac{M_{1} M_{2}}{M}\right)\left(\mathbf{r}_{12} \times \mathbf{v}_{12}\right)+\mathbf{H}_{1}+\mathbf{H}_{2} \text { remains constant }
$$

where $\mathbf{r}_{12}, \mathbf{v}_{12}$ are the position and velocity vectors of $\mathrm{C}_{2}$ relative to $\mathrm{C}_{1}$

## Rendezvous

## Southampton

Conservation of Angular Momentum Example

The rod has a total mass of 0.6 kg . Determine its angular velocity just after the end A falls on to the hook. The hook provides a permanent connection for the rod (i.e. it has a spring lock mechanism).


Just before striking the hook the rod is falling downward with a speed $V_{1}=1 \mathrm{~m} / \mathrm{s}$.
The rod also has the following moments of inertia about its CG position:

$$
\begin{aligned}
& I_{x^{\prime} x^{\prime}}=1.2 \times 10^{-3} \mathrm{kgm}^{2} \\
& I_{y^{\prime} y^{\prime}}=0.7 \times 10^{-3} \mathrm{kgm}^{2} \\
& I_{z^{\prime} z^{\prime}}=1.8 \times 10^{-3} \mathrm{kgm}^{2}
\end{aligned}
$$

## Rendezvous

## Southampton

Conservation of Angular Momentum Example

An impulsive force acts from the hook to change the momentum of the rod. However the angular momentum of the rod is conserved about point A since the moment arm of the impulsive force is zero.
At first time step before impact:


$$
\mathbf{r}_{A G} \times m\left(\mathbf{v}_{1}\right)=\mathbf{r}_{A G} \times m\left(\mathbf{v}_{2}\right)+\mathbf{H}_{2}
$$

$\mathbf{r}_{A G}=-0.0667 \mathbf{i}+0.5 \mathbf{j}$
$\mathbf{v}_{1}=-1 \mathbf{k}$
Rotational Dynamics and Attitude Control
$\mathbf{H}_{2}=\mathbf{I} \boldsymbol{\omega}$
$\mathbf{H}_{2}=I_{x^{\prime} x} \omega_{x} \mathbf{i}+I_{y^{\prime} y} \omega_{y} \mathbf{j}+I_{z^{\prime} z^{\prime}} \omega_{z} \mathbf{k}$

## Rendezvous

## Southampton

Conservation of Angular Momentum Example

$$
\begin{aligned}
\{-0.0667 \mathbf{i}+0.5 \mathbf{j}\} \times\{-0.6 \mathbf{k}\} & =\{-0.0667 \mathbf{i}+0.5 \mathbf{j}\} \times\left\{-0.6 v_{2} \mathbf{k}\right\} \\
& +\left\{\left(1.2 \times 10^{-3}\right) \omega_{x} \mathbf{i}+\left(0.7 \times 10^{-3}\right) \omega_{y} \mathbf{j}+\left(1.8 \times 10^{-3}\right) \omega_{z} \mathbf{k}\right\}
\end{aligned}
$$

$-0.03 \mathbf{i}-0.04002 \mathbf{j}=-0.03 v_{2} \mathbf{i}-0.04002 v_{2} \mathbf{j}$

$$
+\left\{\left(1.2 \times 10^{-3}\right) \omega_{x} \mathbf{i}+\left(0.7 \times 10^{-3}\right) \omega_{y} \mathbf{j}+\left(1.8 \times 10^{-3}\right) \omega_{z} \mathbf{k}\right\}
$$

Equating $\mathrm{i}, \mathrm{j}$ and k components:

$$
\begin{aligned}
-0.03 & =-0.03 v_{2}+\left(1.2 \times 10^{-3}\right) \omega_{x} \\
-0.04002 & =-0.04002 v_{2}+\left(0.7 \times 10^{-3}\right) \omega_{y} \\
0 & =\left(1.8 \times 10^{-3}\right) \omega_{z} \quad \rightarrow \omega_{z}=0
\end{aligned}
$$

However, we still have 2 equations and 3 unknowns...

## Rendezvous

## Southanmpton

Conservation of Angular Momentum Example

After impact the mass will fall in a circular are around A so:


$$
\begin{aligned}
-v_{2} \mathbf{k} & =\left\{\omega_{x} \mathbf{i}+\omega_{y} \mathbf{j}\right\} \times\{-0.0667 \mathbf{i}+0.05 \mathbf{j}\} \\
& =\left(0.05 \omega_{x}+0.0667 \omega_{y}\right) \mathbf{k} \\
-v_{2} & =0.05 \omega_{x}+0.0667 \omega_{y}
\end{aligned}
$$

## Rendezvous

Conservation of Angular
Momentum Example
So the equations are:

$$
\begin{aligned}
-0.03 & =-0.03 v_{2}+\left(1.2 \times 10^{-3}\right) \omega_{x} \\
-0.04002 & =-0.04002 v_{2}+\left(0.7 \times 10^{-3}\right) \omega_{y} \\
0 & =v_{2}+0.05 \omega_{x}+0.0667 \omega_{y}
\end{aligned}
$$

Which can be solved to give:

$$
\begin{aligned}
& v_{2}=0.8351 \mathrm{~m} / \mathrm{s} \\
& \boldsymbol{\omega}=-4.12 \mathbf{i}-9.43 \mathbf{j ~ r a d} / \mathrm{s}
\end{aligned}
$$

## Rendezvous

Conservation of Angular Momentum Example

$$
\begin{aligned}
& v_{2}=0.8351 \mathrm{~m} / \mathrm{s} \\
& \boldsymbol{\omega}=-4.12 \mathbf{i}-9.43 \mathbf{j ~ r a d} / \mathrm{s}
\end{aligned}
$$



## Rendezvous

## Southampton

Critical parameters for ACS
Target selection

- size
- orbit

Target properties

- total mass (range?)
- Centre of gravity position
- inertia matrix (mass distribution)
- tumbling?
- angular velocities of tumbling
- total angular momentum


## Rendezvous

## Southampton

The problem for the ACS system:


Would like to know the combined CG and the inertia matrix to ensure we have enough command authority to control the combined system

## Rendezvous

## Southampton

The problem for the ACS system:


## Rendezvous

## Southampton

De-tumbling options
To de-tumble a target object the total angular momentum of the combined system has to be reduced

Non-contact
Exhaust products directed onto the tumbling object.
Contact
Use external torquers to control the tumbling motion thrusters, variable area geometry?

Retractable 'gate' concept


## Rendezvous

## Southampton

Prime solutions (from Astrium's perspective)

Robotic Arm


Courtesy of DLR

Net solutions


ROGER net system

## Conclusion

## Southampton

## Rotational Dynamics and Attitude Control

The effective design of the AOCS subsystem on the chaser spacecraft is critical to the success of any ADR mission.

The requirements for the AOCS design is significantly more challenging than any standard space mission.

The larger the target object, the greater the challenge.
It involves an understanding of the combined three dimensional inertial properties, angular momentum and rotational dynamics.

