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Introduction 

Aim of lectures 

• To discuss and reinforce the concepts of rotational dynamics and 
angular momentum in general 
 
• Discuss these concepts when applied to an active debris removal 
mission  
 
• To provide a greater understanding into the requirements of the 
attitude and orbit control systems of a chaser spacecraft and its effect 
on the satellite design.  
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Basic motion 

Consider a body in orbit (with no disturbances)… 

Naturally occurring (disturbance) torques: 

• Aerodynamic      <~ 500 km 
• Magnetic     ~ 500 – 35,000 km 
• Solar radiation    >~ 600 – 700 km 
• Gravity gradient  ~ 500 – 10,000 km 

Note that: the 
altitude ranges 
given are very 
approximate 

‘SeaSat’ - Example of 
satellite affected by 
gravity gradients 



Rotational Dynamics and Attitude Control Dr. S.J.I. Walker 5 5 

The Attitude Control Subsystem (ACS*) 

Prime purposes: 

*Note that: this 

subsystem is often 
referred to as the 
Attitude and Orbit 
Control Subsystem 
(AOCS) 

• To achieve the pointing requirements of the payload   

          -   directions and accuracy 

  e.g.  Antennas - Earth pointing, say, or 

          Telescopes - diverse directions etc 
 

• To achieve the pointing requirements for ‘house-keeping’ 

          -  in all phases of the mission 

  e.g.  Power-raising - Sun-pointing 

          Communications - Earth-pointing 

          Thermal - Deep space 

          Orbit change thruster - as required 
 

 

• To manage the (angular) momentum 
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Rotational dynamics 

Linear Momentum  

vector vector scalar 

Newton’s second law: 

- a ‘stepping-stone’ to translational/orbit dynamics 

)(L
dt

d

M v LvL M

)( vM
dt

d
 extF

Free Motion: 

No Force,                                 0 extF     Momentum L  is constant  
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Rotational dynamics 

Angular momentum – Inertia, one dimension 

w 
w 

M 
M 

Is the angular momentum the same? 
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Rotational dynamics 

Angular momentum – Rotational vectors 

w 

x 
ωH xxI

For this one dimensional motion: 

vector vector scalar 

Newton’s second law: 

Free Motion: 

No torque,  

)(H
dt

d
)( ωxxI

dt

d
  extT

 Momentum H is constant  0 extT
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Rotational dynamics 

Angular momentum 

w 
y 

x 
z 



















z

y

x

w

w

w

ω

In three dimensions: 

IωH 

vector vector matrix 

Angular momentum: 
y 

x 
z 

w 



Rotational Dynamics and Attitude Control Dr. S.J.I. Walker 10 10 

Rotational dynamics 

Angular momentum 

ωIH CC 
H 

w 

Newton’s second law: 

Free Motion: 

No torque,  

)( C
dt

d
H )( ωIC

dt

d
  extT

 Momentum H is constant  0 extT

Angular momentum of a rigid body such as the 
main structure of a spacecraft is: 

Inertia matrix referred to 
the centre of mass ‘C’  

C 
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Rotational dynamics 

The inertia matrix 

























zzyzxz

yzyyxy

xzxyxx

C

III

III

III

I

The inertia matrix referred to the centre of mass: 

Ixx, Iyy, Izz are Moments of Inertia 

Ixy, Iyz, Izx are Products of Inertia 

Products of inertia are a measure of unbalance, and cause ‘cross-coupling’ 

ωIH CC 
y 

x 
z 
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Rotational dynamics 

Angular momentum components 









































z

y

x

zzyzxz

yzyyxy

xzxyxx

C

III

III

III

w

w

w

H

 
 
 
























yyzxxzzzz

xxyzyzyyy

zxzyxyxxx

C

III

III

III

www

www

www

H

So the components of the angular momentum vector are: 

ωIH CC 
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Rotational dynamics 

The inertia matrix 

Moments of inertia: 

   dmzyI xx

22

Where the integral extends over the whole 
mass distribution 

Products of inertia: 

 yzdmI yz

The product of inertia associated with the x-
axis is: 

Generally these values are based on standard shapes with 
known formulae 
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Rotational dynamics 

The inertia matrix 

Therefore for a single particle of mass around point C: 

























zzyzxz

yzyyxy

xzxyxx

C

III

III

III

I

 
 

 






















22

22

22

yxmmyzmxz

myzzxmmxy

mxzmxyzym

CmI
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Rotational dynamics 

The inertia matrix – products of inertia 

If there is a plane of symmetry, then the product of inertia associated with all 
axes in that plane will be zero. For example, an aircraft whose xz-plane is a plane 
of symmetry will have: 

0xyI 0yzI

If two of the co-ordinate planes are planes of 
symmetry, then all three of the products of inertia 
will be zero. This applies to axially symmetric bodies 
such as many expendable launchers. 
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Rotational dynamics 

Useful Formulae 

Transfer of reference point (parallel axis theorem)  
 
If an object whose centre-of-mass G is at (X, Y, Z) has an inertia matrix [IG] 
referred to G, then add on the inertia matrix of its equivalent particle referred 
to O, in order to obtain the inertia matrix [IO] referred to parallel axes at O, that 
is: 

     OMGO III 

 
 

 
 























22

22

22

yxMMyzMxz

MyzzxMMxy

MxzMxyzyM

ICM

For a point mass/idealised component: 
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Rotational dynamics 

Useful Formulae 

Rotated axes theorem 
 
If the components of a vector V in one set of axes are expressed as the terms in 
a (3 x 1) column matrix V1, say, and V2 consists of its components in a second 
set that rotated relative to the first, then V2 may be expressed as: 
 
 
 
Then [R] is known as a rotation matrix.  
 
The inertia matrix [I ] can then be transformed between the same set of axes by 
using: 
 
 
 
The rotation matrix can be constructed using Euler angles.  

  12 VV R

      1

12


 RIRI
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Rotational dynamics 

Useful Formulae 

Moment of inertia about a single arbitrary axis 
 
If an inertia tensor is specified for the axes x, y and z, the moment of inertia of 
the body about an inclined axis can be computed using: 
 
 
 
 
For this calculation the direction cosines ux, uy and uz of the axes must be 
determined. These numbers specify the cosines of the coordinate direction 
angles a, b and g made between the inclined axis and the x, y, z axes 
respectively.  

zxxzzyyzyxxyzzzyyyxxxOa uuIuuIuuIuIuIuII 222222 
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Rotational dynamics 

Single Axis Example 

Determine the moment of inertia of the bent arm shown about the Aa axis. The 
mass of each of the three segments is shown in the figure.  

x 

y 

z 

A 

B 

C D 

a 

5 kg 

5 kg 

10 kg 

4 m 

2 m 

2 m 

2 m 

zxxzzyyzyxxyzzzyyyxxxAa uuIuuIuuIuIuIuII 222222 

Radius of rod: 0.05 m 
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Rotational dynamics 

Single Axis Example  

Determine the moment of inertia of the bent rod shown about the Aa axis. The 
mass of each of the three segments is shown in the figure.  

x 
y 

z 

A 

B 

C D 

5 kg 

5 kg 
10 kg 

(0, 0, 1) 

(-1, 0, 2) (-2, 2, 2) 
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Rotational dynamics 

Single Axis Example  

x 
y 

z 

A 

B 

C D 

5 kg 

5 kg 
10 kg 

(0, 0, 1) 

(-1, 0, 2) (-2, 2, 2) 

y 

x 
z 

zzxx II 
12

2ml


Moment of inertia around axis running laterally through 
the CG  

Moment of inertia around axis running axially through 
the CG  

yyI
2

2mr


Mass m 

Radius r 

Length l 

Moments and products of inertia of the 
solid cylinder segments  

0 xzyzxy III

Products of inertia 
around CG: 
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Rotational dynamics 

Single Axis Example  

x 
y 

z 

A 

B 

C D 

5 kg 

5 kg 
10 kg 

(0, 0, 1) 

(-1, 0, 2) (-2, 2, 2) 

Moment of inertia - Ixx  

 2

111, xxxxx dmII 

 2

222, xxx dmI 

 2

333, xxx dmI 

Segment 1 - AB  

Segment 2 - BC  

Segment 3 - CD 

d1x 

d2x d3x 









 2

11

2

11

12
xxx dm

lm
I 








 2

22

2

2

2
xdm

rm








 2

33

2

33

12
xdm

lm

  
  
















2
2

15
12

25
xxI

  
  
















2
2

25
2

05.05   
      
















22
2

2210
12

410

333.9300625.20667.6 xxI 2kgm 120
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Rotational dynamics 

Single Axis Example  

x 
y 

z 

A 

B 

C D 

5 kg 

5 kg 
10 kg 

(0, 0, 1) 

(-1, 0, 2) (-2, 2, 2) 

Moment of inertia - Iyy  

d1y 

d2y d3y 









 2

22

2

22

12
ydm

lm








 2

11

2

11

12
yyy dm

lm
I









 2

33

2

3

2
ydm

rm

  
  

  
      































22
2

2
2

215
12

25
15

12

25
yyI

  
      
















22
2

2210
2

05.010

2kgm 35.1130125.80667.26667.6 yyI
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Rotational dynamics 

Single Axis Example  

x 
y 

z 

A 

B 

C D 

5 kg 

5 kg 
10 kg 

(0, 0, 1) 

(-1, 0, 2) (-2, 2, 2) 

Moment of inertia - Izz  d2z 

d3z 


















 2

22

2

22

2

1

122
zzz dm

lmrm
I









 2

33

2

33

12
zdm

lm

     
  































2
22

15
12

25

2

05.05
zzI

  
      
















22
2

2210
12

410

2kgm 100333.93667.600625.0 zzI
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Rotational dynamics 

Single Axis Example  

x 
y 

z 

A 

B 

C D 

5 kg 

5 kg 
10 kg 

(0, 0, 1) 

(-1, 0, 2) (-2, 2, 2) 

Products of inertia 

 1111, yxmII xyxy 

 2222, yxmI xy 

 
3333, yxmI xy 

As all the elements are uniform solid cylinders their products of inertia around 
their CG is zero.  

     333222111 yxmyxmyxmI xy 

              2210015005 xyI
2kgm 40

     333222111 zymzymzymI yz 

              2210205105 yzI 2kgm 40
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Rotational dynamics 

Single Axis Example  

x 
y 

z 

A 

B 

C D 

5 kg 

5 kg 
10 kg 

(0, 0, 1) 

(-1, 0, 2) (-2, 2, 2) 

Products of inertia 

     333222111 zxmzxmzxmI xz 

              2210215105 xzI 2kgm 50
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Rotational dynamics 

Single Axis Example 

z 

x 

y A 

B 

C D 

a 

5 kg 

5 kg 

10 kg 

4 m 

2 m 

2 m 

2 m 

Need to determine the  
direction cosines: 

kjiAa 242 r

     222
242 Aar

899.4

Aa

Aa
Aa

r

r
u 

Unit vector in axis Aa: 

408.0xu 816.0yu 408.0zu

899.4

242 kji 
 kji 408.0816.0408.0 
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Rotational dynamics 

Single Axis Example:  

zxxzzyyzyxxyzzzyyyxxxAa uuIuuIuuIuIuIuII 222222 

408.0xu 816.0yu 408.0zu

2kgm 50xzI2kgm 40yzI2kgm 40xyI

2kgm 100zzI2kgm 35.113yyI2kgm 120xxI

        222
408.0100816.035.113408.0120 AaI

       408.0816.0402816.0408.0402 

   408.0408.0502 
2kgm 2.42AaI

Moments of inertia 

Products of inertia 

Direction cosines 
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Rotational dynamics 

The inertia matrix 

[ I ] is an important quantity when sizing up the control system inputs 
for any vehicle. 
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Rotational dynamics 

Properties of rotational motion – Gyroscopic Precession 



Rotational Dynamics and Attitude Control Dr. S.J.I. Walker 31 31 

Rotational dynamics 

Properties of rotational motion – Gyroscopic Precession 

The rotational displacement occurs 
90 degrees later in the direction of 
rotation. 

T

tT

H 
H0 

H1 
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Rotational dynamics 

Properties of rotational motion – Gyroscopic Precession 

Mass     2 kg 

Angular rate w         20 rads/s 

Moment of inertia   0.1 kg.m2 

Angular momentum,  

       H  (= I w )  = 2 kg m2/s H 
T t 
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Rotational dynamics 

Properties of rotational motion 

Momentum Bias/Gyroscopic rigidity 

Momentum reduces sensitivity to torque 

H1 

H0 

H1 H1 

H0 H0 

Low bias Large bias Mid bias 

Tt 
 

During t, the momentum changes direction  from H0 to H1 
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Rotational dynamics 

Use of Momentum Bias 

Momentum bias is a method commonly used to provide inherent 
stability. However, there are consequences of doing so…   

• to use momentum bias, it is desirable that one body axis 
of the spacecraft remains invariantly pointing (usually 
perpendicular to the orbit plane) 
 

• bias introduces an oscillatory nutation mode 
 
• a system with bias will have different torque responses 
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Rotational dynamics 

Use of Momentum Bias – Torque responses 

Torque response  
with bias 

Torque response  
without bias 
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Rotational dynamics 

Satellite Stabilisation Types: 
Spacecraft 

Spinner 

Hybrid 
Dual-

spinner 

3-axis 
stabilised  

(zero bias) 

No  bias With  bias 

Navstar GPS 
(2R) 

Comsats (many) 

Giotto 

Intelsat 2-4,6 

Galileo 
(Jupiter) 

Intelsat 1 

Meteosat SG 

Cluster 

Small sats 

Examples Examples Examples 

Examples 

Magellan 

Hubble ST 

JWST 

Comsats (many) 
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Rotational dynamics 

Momentum Management 

H 

( Text = 0   Momentum H is constant)  

( Text     0   Momentum H changes in magnitude/direction)  

• The ACS must ‘manage’ the momentum H of the spacecraft using 
control torquers to do so. 

• This can be achieved using the principles of: 
 Conservation of momentum – the storage/transfer of momentum 
 
 
 
 Newton’s second law – by applying a torque to the satellite 
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Rotational dynamics 

Categories of Torques 

External torques  

- due to reactions with the environment 
- i.e. a torque is applied which changes the total angular 
momentum of the satellite 

Internal torques  

- due to reactions between two parts of the spacecraft 
- by definition no external torque is applied, therefore the total angular 
momentum is conserved 
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Rotational dynamics 

External torques/torquers 

Naturally occurring (disturbance) torques: 

• Aerodynamic      <~ 500 km 
• Magnetic     ~ 500 – 35,000 km 
• Solar radiation    >~ 600 – 700 km 
• Gravity gradient  ~ 500 – 10,000 km 
(Thrust misalignment)  

Controllable external torquers 

• Gas jets            all heights 
• Magnetorquers          up to synchronous 
• Adjustable geometry  
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Rotational dynamics 

Internal torques/torquers 

Internal disturbance torques: 

• Mechanisms – deploying solar arrays 
• Fuel movement (‘slosh’) 
• Astronaut movement 

Controllable internal torquers (momentum stores) 

• Reaction wheels 
• Momentum wheels 

As the ACS must ‘manage’ the momentum H of the spacecraft therefore 
one type of external torquer must be carried. 
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ACS for Rendezvous 

Prime purposes: 

• To achieve the pointing requirements of the payload   

          the capture and control the proposed target 
 

 

• To achieve the pointing requirements for ‘house-keeping’ 

          -  in all phases of the mission 

  e.g.  Power-raising - Sun-pointing 

          Communications - Earth-pointing 

          Thermal - Deep space 

          Orbit change thruster - as required 
 

 

• To manage the (angular) momentum 

• The inertia matrix 
• Choice of external     
torquers 
• The use of spinning 
systems    
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Rendezvous 

Multiple Rigid Bodies   

For the system: during a collision/separation: 
• their total absolute linear momentum remains constant 
 
 

 
• their angular momenta referred to C remains constant, so 
 
 
 

 
 where r12 , v12 are the position and velocity vectors of C2 relative to C1 

2211 vvv MMM C  remains constant   

  211212
21 HHvrH 










M

MM
C

remains constant   
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Rendezvous 

Conservation of Angular  
Momentum Example   

The rod has a total mass of 
0.6 kg. Determine its angular 
velocity just after the end A 
falls on to the hook. The hook 
provides a permanent 
connection for the rod (i.e. it 
has a spring lock 
mechanism).  

Just before striking the hook the 
rod is falling downward with a 
speed V1 = 1 m/s. 
The rod also has the following 
moments of inertia about its CG 
position: 

23

''

23

''

23

''

kgm 108.1

kgm 107.0

kgm 102.1













zz

yy

xx

I

I

I

x 
y 

z 

0.1 m 

x’ 
y’ 

z’ 

0.1 m 

0.0667 m 

0.0333 m 

0.05 m A 

G 
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Rendezvous 

Conservation of Angular  
Momentum Example   

An impulsive force acts from 
the hook to change the 
momentum of the rod. 
However the angular 
momentum of the rod is 
conserved about point A 
since the moment arm of the 
impulsive force is zero. 

At first time step before impact: 

x 
y 

z 

0.1 m 

x’ 
y’ 

z’ 

0.1 m 

0.0667 m 

0.0333 m 

0.05 m A 

G 

rAG 

 1vr mAG 

At second time step after impact: 

H2 

  22 Hvr mAG

jir 5.00667.0 AG

kv 11 

IωH 2

kjiH zzzyyyxxx III www ''''''2 
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Rendezvous 

Conservation of Angular  
Momentum Example   

       kjikji 26.05.00667.06.05.00667.0 v

      kji zyx www 333 108.1107.0102.1  

jiji 22 04002.003.004002.003.0 vv 

      kji zyx www 333 108.1107.0102.1  

Equating i, j and k components: 

  xv w3

2 102.103.003.0 

  yv w3

2 107.004002.004002.0 

  zw3108.10  0 zw

However, we still have 2 equations and 3 unknowns… 
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Rendezvous 

Conservation of Angular  
Momentum Example   

x 
y 

z 

0.1 m 

x’ 
y’ 

z’ 

0.1 m 

0.0667 m 

0.0333 m 

0.05 m A 

G 

rAG 

H2 

After impact the mass 
will fall in a circular arc 
around A so: 

AGrωv 2

   jijik 05.00667.02  yxv ww

 kyx ww 0667.005.0 

yxv ww 0667.005.02 
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Rendezvous 

Conservation of Angular  
Momentum Example   

  xv w3

2 102.103.003.0 

  yv w3

2 107.004002.004002.0 

So the equations are: 

yxv ww 0667.005.00 2 

Which can be solved to give: 

m/s 8351.02 v

rad/s 43.912.4 jiω 
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Rendezvous 

Conservation of Angular  
Momentum Example   

x 
y 

z 

0.1 m 

x’ 
y’ 

z’ 

0.1 m 

0.0667 m 

0.0333 m 

0.05 m A 

G 

rAG 

H2 

m/s 8351.02 v

rad/s 43.912.4 jiω 
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Rendezvous 

Critical parameters for ACS 

Target selection  
 – size 
 – orbit 
Target properties  
 – total mass (range?)  
         – Centre of gravity position  
 – inertia matrix (mass distribution) 
 – tumbling?  
  – angular velocities of tumbling  
  – total angular momentum 
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Rendezvous 

The problem for the ACS system:   

Would like to know the combined CG and the inertia matrix to  
ensure we have enough command authority to control the combined 
system   
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Rendezvous 

The problem for the ACS system:   

M M 
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Rendezvous 

De-tumbling options   

Non-contact 
 Exhaust products directed onto the tumbling object.  
Contact 
 Use external torquers to control the tumbling motion – 
thrusters, variable area geometry? 
 

To de-tumble a target object the total angular momentum of the 
combined system has to be reduced 

Retractable ‘gate’ 
concept 
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Rendezvous 

Prime solutions (from Astrium’s perspective) 

Robotic Arm Net solutions 

Courtesy of DLR 
ROGER net system 
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Conclusion 

Rotational Dynamics and Attitude Control 

The effective design of the AOCS subsystem on the chaser spacecraft is 
critical to the success of any ADR mission.  
 
The requirements for the AOCS design is significantly more challenging 
than any standard space mission.  
 
The larger the target object, the greater the challenge.  
 
It involves an understanding of the combined three dimensional inertial 
properties, angular momentum and rotational dynamics.  
 
 


