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Introduction

Aim of lectures

» To discuss and reinforce the concepts of rotational dynamics and
angular momentum in general

« Discuss these concepts when applied to an active debris removal
mission

« To provide a greater understanding into the requirements of the
attitude and orbit control systems of a chaser spacecraft and its effect
on the satellite design.
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Basic motion

Consider a body in orbit (with no disturbances)...

Naturally occurring (disturbance) torques:

« Aerodynamic <~ 500 km

« Magnetic ~ 500 — 35,000 km
o Solar radiation >~ 600 — 700 km
 Gravity gradient ~ 500 — 10,000 km

Note that: the
altitude ranges
given are very
approximate

‘SeaSat’ - Example of
satellite affected by
gravity gradients

Rotational Dynamics and Attitude Control Dr. S.J.1. Walker 4
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The Attitude Control Subsystem (ACS¥) P

Prime purposes:

« To achieve the pointing requirements of the payload
- directions and accuracy
e.g. Antennas - Earth pointing, say, or
Telescopes - diverse directions etc

« To achieve the pointing requirements for ‘house-keeping’
- in all phases of the mission
e.g. Power-raising - Sun-pointing

Communications - Earth-pointing " .
Thermal - Deep space Note that: this
subsystem is often

Orbit change thruster - as required referred to as the

Attitude and Orbit
Control Subsystem

« To manage the (angular) momentum (AOCS)

Rotational Dynamics and Attitude Control Dr. S.J.1. Walker 5
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Rotational dynamics

Linear Momentum
- a ‘stepping-stone’ to translational /orbit dynamics

L = Mv MV L
/ N &——

vector scalar vector
Newton’s second law:
d d
— (L) = —(MVv) =D F_
r t( ) . t( ) =2 Fua

Free Motion:
No Force, E F.. = O = Momentum L is constant
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Rotational dynamics

Angular momentum — Inertia, one dimension

M
M

Is the angular momentum the same?
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Rotational dynamics

Angular momentum — Rotational vectors

For this one dimensional motion:

H=I1__o

XX

/ Voo

vector scalar vector

Newton’s second law:
d d
—(H) = — (| = T
dt ( ) dt ( xx(o) Z ext

Free Motion:

UNIVERSITY OF
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No torque, ZText =0 = Momentum H is constant

Rotational Dynamics and Attitude Control Dr. S.J.1. Walker



UNIVERSITY OF

| | Southampton
Rotational dynamics

Angular momentum

In three dimensions:
[ w, A

O=|w

y
\Y;

Angular momentum:

HII(D 0,
/ VO

vector matrix vector
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Rotational dynamics
Angular momentum
Angular momentum of a rigid body such as the
main structure of a spacecraft is: ¥

H. =1.o®

Inertia matrix referred to
the centre of mass ‘C’

Newton’s second law:

Free Motion:

No torque, ZText =0 = Momentum H is constant

Rotational Dynamics and Attitude Control Dr. S.J.l. Walker 10
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Rotational dynamics

The inertia matrix
The inertia matrix referred to the centre of mass: y

H. =10

/
L Ixx _Ixy _Ixz\
. =] -1 | — |

C Xy yy yz

I_,I_.I_ areMoments ofInertia

X2 Yy “zz

L., 1, I, are Products of Inertia

Products of inertia are a measure of unbalance, and cause ‘cross-coupling’

Rotational Dynamics and Attitude Control Dr. S.J.1. Walker 11



Rotational dynamics

Angular momentum components

H, =

H. =1l.o

/

Ixx _Ixy _Ixz\(a)x\
_Ixy Iyy _Iyz @,

\ Ixz o Iyz Izz )\a)z)
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So the components of the angular momentum vector are:

H, =

Rotational Dynamics and A

/(Ixxa)x — Ixya)y —- 1,0, )\

(Iyya)y -1,0, - Ixya)x)

\(Izza)z o Ixza)x _ Iyza)y)/

ttitude Control Dr. S.J.l. Walker
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Rotational dynamics

The inertia matrix
Moments of inertia:

| :_[(y2+22)dm

Where the integral extends over the whole
mass distribution

Products of inertia:

The product of inertia associated with the x-
axis 1s:

|, =_[yzdm

Generally these values are based on standard shapes with
known formulae

Rotational Dynamics and Attitude Control Dr. S.J.1. Walker 13



Rotational dynamics

The inertia matrix

/ IXX

Xy

\ Ixz

UNIVERSITY OF

Therefore for a single particle of mass around point C:

/m(yz + 22)

ICm

Rotational Dynamics and Attitude Control

\

—mxy
— MXZ

m(x2 + 22)
—myz

Dr. S.J.1.

Southampton
| \
|yz
2z )
—mxz )
—myz
m(x2 + yz) J
Walker 14
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Rotational dynamics

The inertia matrix — products of inertia

If there is a plane of symmetry, then the product of inertia associated with all
axes in that plane will be zero. For example, an aircraft whose xz-plane is a plane
of symmetry will have:

If two of the co-ordinate planes are planes of
symmetry, then all three of the products of inertia
will be zero. This applies to axially symmetric bodies
such as many expendable launchers.

Rotational Dynamics and Attitude Control Dr. S.J.1. Walker
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Rotational dynamics

Useful Formulae
Transfer of reference point (parallel axis theorem)
If an object whose centre-of-mass G is at (X, Y, Z) has an inertia matrix [I]

referred to G, then add on the inertia matrix of its equivalent particle referred
to O, in order to obtain the inertia matrix [I,] referred to parallel axes at O, that

)=l o]

For a point mass/idealised component:

M (y2 + 22) — Mxy — Mxz
lewl=l —Mxy  M(x2+22)  —Myz
— Mxz ~Myz M (x2 + y2)

Rotational Dynamics and Attitude Control Dr. S.J.l. Walker 16
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Rotational dynamics

Useful Formulae

Rotated axes theorem

If the components of a vector V in one set of axes are expressed as the terms in
a (3 x 1) column matrix V,, say, and V, consists of its components in a second
set that rotated relative to the first, then V, may be expressed as:

V, = [R]Vl
Then [R] is known as a rotation matrix.

The inertia matrix [I ] can then be transformed between the same set of axes by

1,]=[RILIRT

The rotation matrix can be constructed using Euler angles.

Rotational Dynamics and Attitude Control Dr. S.J.1. Walker 17
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Rotational dynamics

Useful Formulae

Moment of inertia about a single arbitrary axis

If an inertia tensor is specified for the axes x, y and z, the moment of inertia of
the body about an inclined axis can be computed using;:

2 2 2
loa = LUy 1,0y +1,u;, =21, uu =21 uu, —21,uu,

For this calculation the direction cosines u,, u, and u, of the axes must be
determined. These numbers specify the cosines of the coordinate direction
angles a, fand ymade between the inclined axis and the x, y, z axes
respectively.

Rotational Dynamics and Attitude Control Dr. S.J.l. Walker 18
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Rotational dynamics

Single Axis Example

Determine the moment of inertia of the bent arm shown about the Aa axis. The
mass of each of the three segments is shown in the figure.

Radius of rod: 0.05 m

<

2 2 2
| o = LUy +1u) +1,u; =21 uu =21 ,uu, -21,uu,

Rotational Dynamics and Attitude Control Dr. S.J.1. Walker 19
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Rotational dynamics

Single Axis Example

Determine the moment of inertia of the bent rod shown about the Aa axis. The
mass of each of the three segments is shown in the figure.

Z1 (1,02  10kg (-2,2 2)
5kg_ :

5 kg
0,0,1)

Rotational Dynamics and Attitude Control Dr. S.J.l. Walker 20
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Rotational dynamics 21 (1,02  10kg (2.2 2)
Single Axis Example 5kg . 2 (
Moments and products of inertia of the °
solid cylinder segments B
5 kg
(O, 0 1) e L -
Mass m L y
Radius r X/ A
Length |
Moment of inertia around axis running laterally through
the CG 5
| | ml
X w — V2 =
12
Moment of inertia around axis running axially through
Products of inertia the CG
around CG: | mr 2
l,=1,=1,=0 w =5

Rotational Dynamics and Attitude Control Dr. S.J.1. Walker 21
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Rotational dynamics Z1 (1,02  10kg (-2,2 2)

Single Axis Example 5 kg )
Moment of inertia - |,
B\

)Segment2 BC X /A e

I +mc2

+ (
+ (| + M, Segment 3-CD

(1“+md 3} ( ZX] (rqzla"ermd;Xj
[ ST . oy |+ sy | X ooy (o)

=6.667 +20.00625+93.333 =120 kgm*

Rotational Dynamics and Attitude Control Dr. S.J.1. Walker 22
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10kg (-2, 2, 2)

Rotational dynamics Zt(-1,0,2)

Single Axis Example

Moment of inertia - |yy

{m:»’zrz + mgdfyj X A
= [(51(22)2 +(5)(1)2j+[(51(22)2 +(B)(1F +(2F )j
o[0T o2y - (a1

2

|, =6.667+26.667+80.0125=113.35 kgm ?

Rotational Dynamics and Attitude Control Dr. S.J.1. Walker 23



Rotational dynamics

Single Axis Example
Moment of inertia - |,,
2 2
mr m,l; 5 5 kg
Izz:( 2 j_l_( 12 +m2d22 (0,0, 1)

2
m3|3

1%
|ZZ=( j+[@5)1(22)2+(5)(1)2j +(

|, =0.00625+6.667 +93.333 =100 kgm*

2
+ m3d32

(5)0.05)°
2

Rotational Dynamics and Attitude Control Dr. S.J.I. Wal

(Lo)4)°
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1 (-1,0,2 10kg (-2, 2,2)

5 kg

............

[ETTTTITT [ETTTTITTN cecetcnniieiiiess

|
j gy

+<1o>(<—z>2+<z)2)]
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Rotational dynamics 21 (1,02 10kg (2.2 2)
Single Axis Example Skg 2 Yy
Products of inertia > ¢
£2
- |
IXy =(Ixy,1+m1xly1) 5 kg | |
O, O, 1 L] .................................... '
+ (I w2 T XY, ) o0 | y
* (I xy,3 T MaX; ys) X/A

As all the elements are uniform solid cylinders their products of inertia around
their CG is zero.

Ly = (MY, )+ (M, ¥, )+ (max, ys)
1, = ((5)0X0))+((5X-21)0))+((10)~2)2)) = ~40 kgm*
,=(my,z)+(m,y,2, ) +(m,y,2,)
, =((5)0)1))+((5)0)2))+((10)X2)2)) = 40 kgm*

Rotational Dynamics and Attitude Control Dr. S.J.1. Walker 25
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Rotational dynamics 21 (1,02 10kg (2.2.2)
Single Axis Example 5kg 2 0 S
Products of inertia K ° ¢
B |
5 kg
(O, O, 1) @ ...........................
X/A 'y
l,, = (mlxlzl)+ (mzxzzz )"‘ (msxszs)
. = ((5)0)2))+((5)-1)2))+((10)~2)2)) = 50 kgm*
26
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Rotational dynamics
Single Axis Example

Need to determine the
direction cosines:

r, =—21+4]+2k

| = (= 2) +(4) +(2)

=4.899

Unit vector 1n axis Aa:

_2i+4j+2k | .
Uy, =t = ZATHTR 4 408i10.816 j+0.408K
r 4.899

u, =—0.408 u, =0.816 u, =0.408

Rotational Dynamics and Attitude Control Dr. S.J.1. Walker 27
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Rotational dynamics

Single Axis Example:
2 2 2
| o = LU +1,u) +1u; =21, uu —21 uu, —21 uu

yzy -z Xz Xz
Moments of inertia
|, =120kgm? 1, =113.35kgm* 1,, =100 kgm°
Products of inertia
_ 2
Ixy =-40 kgm2 Iyz =40 kgm2 Ixz =—-30 kgm

Direction cosines

u =-0.408 u,=0.816 u,=0.408
. =(120)-0.408)" +(113.35)0.816) +(100)0.408)°
—2(—40)-0.408)0.816)—2(40)0.816)0.408)
—2(—50)—0.408)0.408)
|, =42.2kgm?

Rotational Dynamics and Attitude Control Dr. S.J.l. Walker 28
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Rotational dynamics

The inertia matrix

[ | ]is an important quantity when sizing up the control system inputs
for any vehicle.

Rotational Dynamics and Attitude Control Dr. S.J.l. Walker 29
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Rotational dynamics

Properties of rotational motion — Gyroscopic Precession

Rotational Dynamics and Attitude Control Dr. S.J.l. Walker 30
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Rotational dynamics

Properties of rotational motion — Gyroscopic Precession

The rotational displacement occurs
90 degrees later in the direction of
rotation.

Rotational Dynamics and Attitude Control Dr. S.J.1. Walker 31



Rotational dynamics
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Properties of rotational motion — Gyroscopic Precession

Rotational Dynamics and Attitude Control

Mass ~ 2 kg
Angular rate ® ~ 20 rads/s
Moment of inertia ~ 0.1 kg.m?

Angular momentum,

H (=Iw) =2kgm?/s

Dr. S.J.l. Walker 32
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Rotational dynamics

Properties of rotational motion
Momentum Bias/Gyroscopic rigidity

Momentum reduces sensitivity to torque

During ot, the momentum changes direction oy from H, to H,

H, H,
e BT -~
1
ﬁ _ 7)'. _ 5'//\ J T
Ho Ho Ho
Low bias Mid bias Large bias

Rotational Dynamics and Attitude Control Dr. S.J.l. Walker 33



UNIVERSITY OF

| | Southampton
Rotational dynamics

Use of Momentum Bias

Momentum bias is a method commonly used to provide inherent
stability. However, there are consequences of doing so...

« to use momentum bias, it is desirable that one body axis
of the spacecraft remains invariantly pointing (usually
perpendicular to the orbit plane)

« bias introduces an oscillatory nutation mode

- a system with bias will have different torque responses

Rotational Dynamics and Attitude Control Dr. S.J.1. Walker 34
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Rotational dynamics
Use of Momentum Bias — Torque responses
Torque response Attitude &
without bias
Angular rate @
%
O = =
Torque pulses — Time
Torque response
direction
8 Torque pulse
0 ——

Rotational Dynamics and Attitude Control Dr. S.J.l. Walker 35
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Rotational dynamics
Satellite Stabilisation Types:
Spacecraft
No| bias With |bias
3-axis Spinner
stabilised
(zero bias) . Dual- Examples
Hybrid spinner
Examples Examples Examples Intelsat 1
Magellan Navstar GPS Giotto Meteosat SG
Hubble ST (2R) Intelsat 2-4.6 Cluster
JWST Comsats (many) Galileo Small sats
Comsats (many) (Jupiter)

Rotational Dynamics and Attitude Control Dr. S.J.l. Walker 36
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Rotational dynamics

Momentum Management

« The ACS must ‘manage’ the momentum H of the spacecraft using
control torquers to do so.

« This can be achieved using the principles of:
Conservation of momentum — the storage/transfer of momentum

(2T, = 0 ® Momentum H is constant)

Newton’s second law — by applying a torque to the satellite

(2T, 20 = Momentum H changes in magnitude/direction)

Rotational Dynamics and Attitude Control Dr. S.J.l. Walker 37
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Rotational dynamics

Categories of Torques
External torques

- due to reactions with the environment
- i.e. a torque is applied which changes the total angular
momentum of the satellite

Internal torques

- due to reactions between two parts of the spacecraft
- by definition no external torque is applied, therefore the total angular
momentum is conserved

Rotational Dynamics and Attitude Control Dr. S.J.l. Walker 38



Rotational dynamics

External torques/torquers

Naturally occurring (disturbance) torques:

« Aerodynamic <~ 500 km

« Magnetic ~ 500 — 35,000 km
e Solar radiation >~ 600 — 700 km

» Gravity gradient ~ 500 — 10,000 km
(Thrust misalignment)

Controllable external torquers

 Gas jets all heights
« Magnetorquers up to synchronous
 Adjustable geometry

Rotational Dynamics and Attitude Control Dr. S.J.1. Walker
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Rotational dynamics

Internal torques/torquers

Internal disturbance torques:

« Mechanisms — deploying solar arrays
e Fuel movement (‘slosh’)
e Astronaut movement

Controllable internal torquers (momentum stores)

e Reaction wheels
« Momentum wheels

As the ACS must ‘manage’ the momentum H of the spacecraft therefore
one type of external torquer must be carried.

Rotational Dynamics and Attitude Control Dr. S.J.l. Walker 40
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ACS for Rendezvous

Prime purposes:

« To achieve the pointing requirements of the payload
the capture and control the proposed target

« To achieve the pointing requirements for ‘house-keeping’
- in all phases of the mission
e.g. Power-raising - Sun-pointing
Communications - Earth-pointing
Thermal - Deep space

e The inertia matrix
e Choice of external

Orbit change thruster - as required
torquers
/  The use of spinning

« To manage the (angular) momentum systems

Rotational Dynamics and Attitude Control Dr. S.J.1. Walker 41
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Rendezvous

Multiple Rigid Bodies

For the system: during a collision/separation:
e their total absolute linear momentum remains constant

MVC = |\/|1V1 +M 2V2 remains constant

« their angular momenta referred to C remains constant, so

M.M
HC: KA 2 (r12><V12)—|—H1—|—H2 remains constant

» » V,, are the position and velocity vectors of C, relative to C,

where r

Rotational Dynamics and Attitude Control Dr. S.J.1. Walker 42
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Rendezvous

Conservation of Angular
Momentum Example

The rod has a total mass of
0.6 kg. Determine its angular
velocity just after the end A
falls on to the hook. The hook
provides a permanent
connection for the rod (i.e. it
has a spring lock
mechanism).

Just before striking the hook the 5 5
rod is falling downward with a |, =1.2x107 kgm
speed V, =1m/s. B _3 2
The rod also has the following | y'y' 0.7x10™ kgm
mor.n.ents of inertia about its CG | =18x1073 kgm 2
position: 2t

Rotational Dynamics and Attitude Control Dr. S.J.1. Walker 43
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Rendezvous

Conservation of Angular
Momentum Example

An impulsive force acts from
the hook to change the
momentum of the rod.
However the angular
momentum of the rod is
conserved about point A
since the moment arm of the
impulsive force is zero.

At first time step before impact: At second time step after impact:
Fag % m(Vl) = T X m(Vz )"' H,
I, =-0.0667i+0.5) H, =lo
v, =—1k H, =l ol+], o]+, ok

Rotational Dynamics and Attitude Control Dr. S.J.1. Walker 44
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Rendezvous

Conservation of Angular
Momentum Example

{~0.0667i +0.5j}x {~0.6k } = {~0.0667i +0.5j}x {—0.6v,k }

+{1.2x10° Jo,i +(0.7x10° ), j+ (1.8x10 Jo k }

—0.03i —0.04002j = —0.03v,i —0.04002v, |
{1.2x107 i +(0.7x10 ), j+ (1.8x 107 Jo k |

Equating i, j and k components:

~0.03=-0.03v, +(1.2x10 o,
—0.04002 = —0.04002, +(0.7x10 ),
0=(1.8x10" o, S, =0
However, we still have 2 equations and 3 unknowns...

Rotational Dynamics and Attitude Control Dr. S.J.1. Walker 45
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Rendezvous

Conservation of Angular
Momentum Example

After impact the mass
will fall in a circular arc
around A so:

—v,k = {w,i + @, jjx{~0.0667i +0.05j}
= (0.050, +0.0667w, k
~V, =0.050, +0.06670,

Rotational Dynamics and Attitude Control Dr. S.J.l. Walker 46



Rendezvous

Conservation of Angular
Momentum Example

So the equations are:
~0.03=-0.03v, +(1.2x10 o,
—0.04002 = —0.04002v, +(0.7x10 ),
0=V, +0.050, +0.066700,

Which can be solved to give:
v, =0.8351m/s

o =-4.121-9.43) rad/s

Rotational Dynamics and Attitude Control Dr. S.J.1. Walker
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Rendezvous

Conservation of Angular
Momentum Example

v, =0.8351m/s
o =-4.121-9.43j rad/s

Rotational Dynamics and Attitude Control Dr. S.J.l. Walker 48



Rendezvous

Critical parameters for ACS

Target selection
— size
— orbit
Target properties
— total mass (range?)
— Centre of gravity position
— inertia matrix (mass distribution)
— tumbling?
— angular velocities of tumbling
— total angular momentum

Rotational Dynamics and Attitude Control Dr. S.J.1. Walker
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Rendezvous

The problem for the ACS system:

Would like to know the combined CG and the inertia matrix to
ensure we have enough command authority to control the combined
system

Rotational Dynamics and Attitude Control Dr. S.J.l. Walker 50



Rendezvous
The problem for the ACS system:

M

Rotational Dynamics and Attitude Control

Dr. S.J.l. Walker
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Rendezvous

De-tumbling options

To de-tumble a target object the total angular momentum of the
combined system has to be reduced

Non-contact

Exhaust products directed onto the tumbling object.
Contact

Use external torquers to control the tumbling motion —
thrusters, variable area geometry?

Retractable ‘gate’ "%
concept /4 \

Rotational Dynamics and Attitude Control Dr. S.J.1. Walker 52
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Prime solutions (from Astrium’s perspective)

Robotic Arm Net solutions

Sout

HJNIVERSITY OF

ampton

Courtesy of DLR

ROGER net system

Rotational Dynamics and Attitude Control Dr. S.J.1. Walker
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Conclusion

Rotational Dynamics and Attitude Control

The effective design of the AOCS subsystem on the chaser spacecraft is
critical to the success of any ADR mission.

The requirements for the AOCS design is significantly more challenging
than any standard space mission.

The larger the target object, the greater the challenge.

It involves an understanding of the combined three dimensional inertial
properties, angular momentum and rotational dynamics.

Rotational Dynamics and Attitude Control Dr. S.J.1. Walker 54



