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All partners have a PhD in Aerospace Engineering
Dinamica Srl has a strong connection with Academia
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The mission

SURREY

= [talian SME, founded in 2008

= The mission: “... to carry on developing methods and
advanced solutions within the Space field and to
transfer their use in other industrial sectors ...”

Space field Technology transfer Industrial sector
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A Tangible Example

4 P

“vs &, ,

Hubble Pharmaceutical industry

Used to reconstruct | | | Used to reconstruct a

unmodeled structural _ Sy_s.tem_ pharmaceutical process
dynamics | identification dynamics

Used to reduce | B Used to minimize the

ibrati '  Predictive
brations in large
;/ellesclope Isatellsigtes [ control energy supply

M Considerable savings (10-20%) compared to standard methods




I Optimal Control Problem (1/2)

» Consider the following dynamical system:
x = f(x(t),u(t),t)
where: x = {1, ...,z,} s the state vector and

u = {ui,...,um } is the control vector

» Determine the m control functions such that the following
performance index is minimized:

ty
J = p(Xs,ty) +/ L(x(t),u(t),t)dt

tp

where the initial and final state vectors, xo and xy, as well as
the final time ¢ , are not necessarily fixed
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Optimal Control Problem (2/2)

» In addition to the previous statements suppose that the
following constraints are imposed

» Boundary conditions at final time 7 ¢:
Y(xg,tf) =0, where ¢ = {11, ..., ¢, }

e Path constraints on the control variables:
C(u(t),t) <0 ,where C={Cy,..,C,}

» Two classical solution methods:

* Indirect methods: based on reducing the optimal control
problem to a Boundary Value Problem (BVP)

* Direct methods: based on reducing the optimal control
problem to a nonlinear programming problem
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Example: Low-Thrust Earth-Mars Transfer

Given the dynamics of the controlled 2 body problem:

. Ly 1
Minimize: J:/ L(}{,UJ)EHZE

o

Subject to equality constraints:
r(to) =re(to) V(o) =vEe(lo)
r(ty) =rm(ty) v(ty)=vumlty) »

and the inequality
constraints C(u(t),t) < 0: HUH < yinax
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R Indirect Methods (1/6)

» Reconsider the optimal control problem:

Given the dynamical system X = f(x(#), u(t),?)

by
« Minimize: J:gﬂ(}{fof)—|—-/ L(x(t),u(t),t)dt

tp

« Subjectto: P(xr,tf) =0 and C(u(t),t) <0

» Constraints are added to the performance index J by
introducing two kinds of Lagrange multipliers:

e a p-dimensional vector of constants v/ for the final constraints

e two 7- and a @-dimensional vectors of functions A and
(adjoint or costate variables) for dynamics and path constraints
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Indirect Methods (2/6)

» Augmented performance index:

J = o(xptr) +vid(xs,tr)+

—I—f 1(t),t) + AT (f(x,u, t) — %) + pTC(u(t), t))dt

» The dynamics is included in the augmented performance
iIndex as a constraint

» Moreover, pertaining the costate variables for the path
iInequality constraints pt, the generic component [t must
satisfy the following relations:
Cr(u(t),t) <0 = pup(t)=20

Cr(u(t),t) =0 = pug(t) >0
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Indirect Methods (3/6)

» Integrating by parts the term A% yields:
T = (xptr) +vT(xs,tr) — Apxp + Agxo+
+ [ (L(x(t),u(t), £) + NTE(x, u,t) + A x4+ puTC(u(t), t))dt

where Ar = A(tf) and Ao = A(%o)

» The problem is then reduced to identify a stationary point of .J .
This is achieved by imposing the gradient to be zero. The
optimization variables are:

e State vector X and control vector u

e Lagrange multipliers and costate variables v/ , A and [

e Unknown components of the initial state xo , i =k + 1,....n
 Final state and time Xy and i,




Indirect Methods (4/6)

% = f(x(t),u(t),t)y ~ Dynamics
: OENT . (OLNT

5 =50 2 ()

OINT =~ ;OFNT_  (OC\T
(70) *+(5) A+ (G) m=°

Mio=0 (i=k+1,...n Constraints

Bo T O
M= (2 + (2"
Y(xp,tp) =0

C(u(t), t) <0

(;xf)f{:xf,uf,tf}—l—ﬂ—f+y (( P

+L(xpup,ty) + p(tp) Clug,tp) =0




R Indirect Methods (5/6)

» The problem consists on finding the functions x(t) , A(t)
and u(t) by solving the differential-algebraic system:

x = f(x(t),u(t),t)
differential
: of\T OLN\T
A = (=) A (= -
(8};) (ax) Euler .Lagrange
equations

algebraic { (dL)T + (t}f)TJ\ + (aC)T,u, =0 ]

Ju ou du

Note: For the sake of a more compact notation, define the Hamiltonian

H(x,u, A\ t) = L(x(t),u(t), t) + A(t)Tf(x(t),u(t),t) + pu(t)T C(u(t), t)
.
The previous equations read: X = H,,
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» The previous differential-algebraic system must be coupled to
the 27 boundary conditions

Ti0 given or )'LLD =0 i=1,....n
a-. T .'I; T
3}{f E}:{f

and to the p + g + 1 additional constraints

¢

Y(xyg,tr) =0
C(u(t),t) < 0

(gjf)f +§f—i+“ ((E}Z)f + (g;)) +Ly+pfCr=0

\,

' The optimal control problem is reduced to a boundary value
problem on a differential-algebraic system of equations (DAE)
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Assignment #1

= Given the simple optimal control problem (Problem #1)

: 3 —
xzzu2—|—az1u—|—1x% ) ty=1

Dynamics Ob;. fen. . C. init., final time

= Write the necessary conditions for optimality and show that
the optimal solution is
a h(1—t ~
Keep r1(t) = Cosos(h(l) ) | Optimal

{ solution
R ul(t) = —(tanh(1 — t) —:l(()l?) cosh(1 —t) |
COS




R Low-Thrust Transfer to Halo Orbit (1/4)

» Transfer the s/c from a given orbit (GTO raising) to a Halo orbit
around L1 of the Earth-Moon system

» Dynamics:

50
F 2= —> 4y

ox : ' Tangential thrust spiral
.-""‘- .'x'

ﬁ%—gi:a—Fﬂz
; 393+
Z = u

0z ’

X = {I:ya z:':i:'.l gai}T

u = {le wua, HE}T
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Low-Thrust Transfer to Halo Orbit (2/4)

» In canonical form, the dynamics reads: x = f(x,u)

» Performance index: minimize the quadratic functional

ty 1 ty
J:f L(:{,urt)dtzif u-ul dt

tn L

» Constraints: fixed xo and X, fixed final time %

» Euler-Lagrange equations:
X = f(x(t),ult),t) ‘ f(x,u)
_ (OENT . DINT : Of\T
= (&) &) (50 »

oa) A (Ga) n=e o
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Low-Thrust Transfer to Halo Orbit (3/4)

» Processing the last algebraic equation leads to:

OLNT of\T oC\T ‘
i il et — U = —A344, = 1,.....
(Ga) *(Ga) A+ (o) m=0 P u 3+ 4 =1,
which can be inserted in the differential equations

v
The DAE system is reduced to a ODE system

}E(tu) — Xp

» All constraints simply reduce to:
X(tf) —Xf

.

The original problem is reduced to a “simple” Two Point
Boundary Value Problem (TPBVP)
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Low-Thrust Transfer to Halo Orbit (4/4)

» Solution of the TPBVP:
« Transcribe the dynamics (X, A) P (Xo, Ao, - - - XN, AN)
* Couple the transcribed dynamics with the constraints on X0 gng Xf

* Solve the resulting system with a Newton method starting from a
suitable initial condition

Evaluate the control parameters (u() b | N)

Tangential thrust spiral

@ :
25 1 I 1 I I I 1 I 1
20 201 202 203 204 205 206 207 20.8 209 21
l0 -t ; (adim.)




Ny
JINAMICA

INNOVATING TECHNOLOGY

End-to-end optimization w/ finite thrust

» GTO-to-halo fully optimized

 very difficult problem

02 T
¥—2y=—2 4%
dx m
* tens of spirals s 0% T
dz m

tr T
J = /f © dt
1o Isng

e thrust saturation

O
o
©
c
(@)

O

Optimal solution

Switching fcn
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Assignment #2

Given Problem #1

i1 = 0.5z1 + u 21(0) = 1 t; =0
J = 1
x’2:u2—|—x1u—|—3x% xQ( ) xQ(O):() tf=1

Dynamics Ob;. fen. b. c. init., final time

(a) discrete solution and analytical time history of x 1

Solve the TPBVP associated o o1 oz o5 os @5 o o7 os o5
@ - Matlab bUiIt-in pr4C, pr5 C o (b)diSCfeteSO|Utif)nandanalyticellltimehistoryofu

KEEP

el * Sixth-order method bvp h6

DO YOUR
HOMEWORK

-2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

available at http://www.astrodynamics.eu/Astrodynamics.eu/Software.html
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Indirect Methods: Remarks

» Main Difficulties:

Deriving Euler-Lagrange equations and transversality
conditions for the problem at hand

Nonlinearity of the dynamics
Solution of the DAE system itself

Solution of the boundary value problem on the DAE
system

Lack of a plain physical meaning of Lagrange multipliers

P difficulty at identifying good first guesses for Lagrange
multipliers (primer vector theory)
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Optimal Control Problem

» Given a dynamical system: x = f(x(t), u(t).t)

» Determine u(t) which minimize the performance index:

ty
J = p(xs,ty) +/ L(x(t),u(t),t)dt

tp

» and satisfy the constraints: ¥ (xr,tf) =0 C(u(t),t) <0

» Two classical solution methods:

* Indirect methods: based on reducing the optimal control
problem to a Boundary Value Problem (BVP)




JINAMICA
INNOVATING TECHNOLOGY

Nonlinear Programming Problem

» Generally constrained optimization problem

Given a function f(x) = f(x1, %2, ..., Ts)

()
» Subject to K equality constraints:
ck(x) =0, k=1,...K (K <)

e Minimize:

and J inequality constraints:
gj(a:) > O, j — 1, ceny J

where J can exceed v
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Unconstrained Optimization (1/6)

» Minimize: f(x)

» The necessary condition for the identification of the
optimum is:
Vef =0

W

The optimization problem in the v variables « is reduced
to the solution of a system of ¥ nonlinear equations

Note: given the Hessian of f, H, a sufficient condition is:

rHrx>0, Va

» The solution can be found using the Newton method
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Newton Method (1/3)

» Consider the problem:
F(z)=0

» The Newton method is an iterative method based on a
linearization of ' around the current iterate

1. Select an initial guess &
2. Consider the first order approximation of F’

Flx)~ F(2)+ F'(2)-(x—2)=0
3. Find the correction:
Az = (z—2)=—[F'(2)] ' F&)

4. Update current iterate and repeat from 2 until convergence
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Newton Method (2/3)

» Graphical interpretation: F 4 A

» Since it is based on a first © 1

order approximation of F* <
the method is “local”

b

Different first guesses might
lead to different solutions X1.1 X0.1X0.3 X02 x1\,2\ "X




R’
JINAMICA
INNOVATING TECHNOLOGY

Newton Method (3/3)

» Classical methods to stabilize the iteration

e Line Search:
Instead of updating the current iterate using
Tnew = T + Az
Reduce the step size using a parameter «:

Tnew = T + a Ax

where ¢ i1s chosen such that
|F (Znew)|| < |[F(2)]]

* Trust region:
The direction of the computed Ax is slightly modified
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Unconstrained Optimization (2/5)

» Solve: V,f =0

Newton algorithm:

» Select an initial guess «

» While stopping criterion is not satisfied

 Find the corrections Ax to the current solution by solving
the linear system

Hf ACBZ —wa

. . . 2
where H ( is the Hessianof f: H, =V f

« Update the current solution: @« B o+ Ax




R Unconstrained Optimization (3/5)

Important note:
» Consider the following optimization problem

e Minimize the quadratic form:

1
§A:13T HiAz+V, YAz

* Necessary optimality conditions:
Hf Ax+V,f=0
which can be written as:

Hf Ax = —wa
.

Finding the corrections A, i.e. the search direction, in the
original optimization problem is equivalent to minimizing the
previous quadratic form
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Unconstrained Optimization (4/5)

» Given the function to be minimized, f(x), each iteration
of the Newton method is equivalent to:

« Approximate f around the current solution & with a
quadratic form

Find the offset, A:I:, to the zero-gradient point of the
quadratic form

Use Ax as a correction in the original optimization problem

1

Obj 1 \

“\ Ax
- AX
\\ ﬁ

-
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Unconstrained Optimization (5/5)

flan,m2) = 5 (af +a3)

*, example2.m

7]

f(z1,22) = 0 10z2 4 10z, + 2
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Assignment #3

= Numerically re-compute the three unconstrained
optimizations in the previous slide; i.e.,

flan,m2) = o (at +a3)

f(r1,22) =521 + e~ (@1 T5) 4 x5

4

f(z1,22) = % — 10z? + 10z, + =2

= Advice
= Use Matlab built-in fminunc

KEEP

S = Code a SQP solver

DO YOUR
HOMEWORK
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Earth-Mars 2-impulse Transfer (1/3)

» Optimization variables: departure date £ and time of flight ¢, f

» Compute the positions of the starting and arrival planets
through the ephemerides evaluation:

(re, vE) = eph(to, Earth), (ra, var) = eph(to + tiof, Mars)

» Solve the Lambert’s problem to evaluate the escape
velocity v1 and the arrival one V2

» Objective function:
AV = AVy + AV,
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Earth-Mars 2-impulse Transfer (2/3)

» Minimize: f(x) = AV (x) = AV (%o, tiof)

» Necessary conditions for optimality: V. f =0
OAV OAV

— 0 -
0 to 0 ttof

» In a generic iteration, given the current estimate
T = {to, s,y }> €valuate the corrections Az = {Atg, Atsor

-

0

Hf Ax = —me

where H ¢is:
O°AV O*AV
02t 8t08ttof
92 AV 92 AV
8ttof Oto 82ttof
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Earth-Mars 2-impulse Transfer (3/3)

» Search space:
to € [0,1460] M JD2000 = 4 years
tiof € [100,600] day

objective function

LA i
u&iﬁ)

400 T~ e — 1500
> et 1000

5 2 8 8

AV [km/s]

n
o

8o

zm s
transfer time [days] 500
00 departure date [MJD2000]

exampleEM.m
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Equality Constrained Optimization (1/5)
» Minimize:  f(x)
Subject to: c,(x) =0, k=1,...K (K <)

» The classical approach to the solution of the previous
problem is based on the method of Lagrange multipliers

Method of Lagrange multipliers:
» Introduce the Lagrange function:
L(z,\) = f(z) = A" - c(2)

where L is a function of the ¥ variables  and the K
Lagrange multipliers A
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Equality Constrained Optimization (2/5)

» The necessary conditions for the identification of the
optimum are:

VaoL(z,\) =V, f(x) —CH(x)- A=0
VaL(x,A) =c(x) =0
where C() is the Jacobian of ¢()

. 4

The constrained optimization problem in the U variables
Z has been reduced to the solution of a system of v + K
equations in the v + K variables (x, \)

» Solution by Newton method




. Equality Constrained Optimization (3/5)

Algorithm:
» Select an initial guess (x, \)
» While stopping criterion is not satisfied

e Find the corrections (Ax, A)) to the current solution by
solving the linear system

H, -C’ Az | [ —-V.f | Karush-Kuhn-
C 0 AN | | —e Tucker (KKT)

K
where Hj = V2 f — Z A\ V2 C
k=1

» Update the current solution: (x, A) B> (z+ Az, A+ AN)




R Equality Constrained Optimization (4/5)
Important note:

» Consider the following optimization problem:

e Minimize the quadratic form:

1
§Aa}T H Az + (V. f)T Az

e Subject to the linear constraints:

CAx=—c

» Use the approach of Lagrange multipliers

e Lagrange function:

1
§Aa:T H; Az + (V, )T Az — )\ - (CAz+ ¢




R Equality Constrained Optimization (5/5)

* Necessary optimality conditions:
H Az+V,f—-C'-A=0
CAz+c¢c=0

which can be written as:

H,; -C! Az | | =Vif Karush-Kuhn-
C 0 Al | —e Tucker (KKT)

. 4

Finding the corrections (Ax, A)), i.e. the search direction,
in the original optimization problem using the KKT system is
equivalent to minimizing the previous quadratic form
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Inequality Constrained Optimization
» Minimize:  f(x)
Subjectto: gij(z) >0, j=1,..,J

A possible approach

» Interior Point Method:

The inequality constraints are added to the objective function
as a penalty term

J
f(e) = f(@)+ ) pje 9@
j=1

Solution is forced to move into the set of feasible solutions by
means of the barrier function ¢ 97
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Assignment #4

0 lve th O
Solve the NLP problem min f(x) := T2+ x120 + 225 — 621 — 200 — 1223
xeR

st g1(x):=2x7 + 25 <15
g2(x) :=1x1 — 2w9 —x3 > —3
x1,T2,x3 > 0.
= Using Matlab built-in fmincon

Use SQP algorithm, quasi-Newton update, and line search

Set solution tol, function tol, constraint tol to 1e-7

Specify initial guess to xo = (1, 1, 1)

Make sure g2 is treated as linear constraint by fmincon
& Solve w/o providing gradient of obj fcn and constraints; then re-do
KEEP by providing analytic gradients

CALM
HOMEVORK Repeat optimization from a different xo; do we find the same
weewe»  optimal solution found previously? Why?

() B. Chachuat, Nonlinear and Dynamic Optimization, EPFL
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Direct Methods

» Direct methods are based on reducing the optimal control
problem to a nonlinear programming problem

» The core of the reduction of the optimal control problem to
a nonlinear programming problem is:

e The parameterization of all continuous variables
* The transcription of the differential equations describing the
dynamics, into a finite set of equality constraints
Classical transcription methods:
- Collocation
- Multiple Shooting

The original optimal control problem is solved within the accuracy
of the parameterization and the transcription method used
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Parameterization

» The parameterization is based on the discretization of the
continuous variables on a mesh, typically settled up on the

time domain
 Discretize the time domain as:
to =11 <tg < ...<tN:tf

o Discretize the states and the controls over the previous mesh
by defining xx = x(tx) and ux = u(ty)

x(t) B {x1,X2,...,XN}
u(t) p {ug,uz,...,un}

e Consequently, a new vector of variables can be defined:
X = {tf, X1, U1,..., XN, U.N}




-
Transcription: Collocation (1/2)

» Collocation methods are based on the transcription of the
differential equations into a finite set of defects constraints
using a numerical integration scheme

» Simplest case: Euler’s scheme X1

« Solution is approximated Xt

using a linear expansion Xie
Xiy1 = X; +x(t;) - (ti—l—l t;)
= x; + x(t

i) h
e But x =f(x(¢),u(t),t), then:
f(

Xi41 =X; +h-

X;, W, t;)

 which can be written in terms of defects constraints:
hi — Xi+1 — X4 —h-f(xz,uz, ) =0
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Transcription: Collocation (2/2)

» Other numerical integration schemes can be applied
e Runge-Kutta schemes:

k
hi=X;+1 —%X; — h; Zﬁjfij =0
j=1

» The optimal control problem has been parameterized:

e X(t) and u(t) = X ={tr,x1,uy,...,Xy§,Uun}
e Minimize: e Minimize:

f =
J = o(x4.t5) +/th-(x(t)7u(t)Tt)dt J(X)

e Dynamics: % = f(x(¢),u(t),t) =>+ Subjectto: h(X) =0
v

Nonlinear Programming Problem
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Transcription: Multiple Shooting (1/2)

» Time domain in discretized:
to = 11 <t2<...<tN:tf

» Within each time interval, splines are used to model the control
profile u(t) p each time interval contains M — 1 subintervals,
where M is the number of points defining the splines

» On a generic node, the vector of variables will be:

M1y

_ 1
Xz' — {Xi,u vy Uy

79
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Transcription: Multiple Shooting (2/2)

» Within a generic time interval, the splines are used to map ’[h(e;5
discrete values {u}, ...,u} !} into continuous functions )

i
.
Numerical integration can be used to compute X;_
» The dynamics is transcribed into a set of defects constraints:
h,=x; —x; =0
» The vector of variables for the nonlinear programming problem is:
X =A{ts, X1,...., Xn}
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Assignment #5

= Solve Problem #1 with direct transcription and collocation

= xo(1
j32:u2—|—ac1u+gajf z2(1) x2(0) =0 tr=1

Dynamics Ob;. fen. b. c. init., final time

(c) error of x | and u located at discrete points

Use Euler method for direct
transcription

Provide analytic gradients and zero
initial guess

log10(abs(error))

0.i1 Oi2 053 Oi.4 055 Oi.6 0.i7 Oi.8
& . . (d) re—integrate dynamics with discrete control solution
EED Compare numerical vs analytical -

CALM solution

DO YOUR .
HOMEWORK Make trade-off between CPU time

and solution accuracy

log10(abs(error))

Ll
o O o1 O
o T T




R Low-Thrust Earth-Mars Transfer (1/2)

» Optimal control problem:

« Given the dynamics of the controlled 2 body problem:

N ¥
r——r—g-r—l—u

o tr 1 [
* Minimize: J:f L(x, uj)dt:ﬁ/ u-u dt

to L

e Subjectto: r(tg) =rg(ty) v(ty) = ve(ty)
r(ty) =rm(ty) v(ty) =vm(ty)

» Transcription technique:
Simple shooting

Note: Simple shooting is
multiple shooting when N =1




- Low-Thrust Earth-Mars Transfer (2/2)

» Cubic splines for u(%) built on four points B M = 4

» Earth’s ephemerides are used to set i.c. for the integration of the
shooting method P> constraints on X automatically satisfied

» Optimization variables: tg, t¢,u',..., u® (dim(X) = 14)

» First guess: ballistic Lambert’s arc

ul [mis?]

200 300 400 500 600
time [days]

first guess solution
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Controlled Traj. in Relative Dynamics

Given the equations of the relative dynamics:
(& —2ny —3nz =

y+2nr =

\ 54 nlzy =

) # O B> Formation depl.
) # 0 P Formation recontf.
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Formation Flying Deployment

» Transcription technique: Simple shooting
» Cubic splines for u(%) built on six points B M = 6
» First guess: u(t) =

» Reference orbit:
e a=26570 km

D)
| — p—
[ -
a <
5 3
o
| ©
O -

0
Tangential

Out of Plane

Tangential
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Mars Aero-Gravity Assist (1/4)

QOutgoing
hyperbolic leg

\

Vo

Atmospheric
phase

Hyperbolic
Trajectory

Incoming
hyperbolic leg

Gravity assist Aero-Gravity Assist
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Mars Aero-Gravity Assist (2/4)

» Dynamics:
V sin~y

2 V cosycos

Rcos ¢
V cosysiny
R

D .
— — G'sinvy
m

Lcoso V2 cosy

-G
- Ccos 7y + 2

Lsinoe  V?tan¢cos~ycos

M COS 7y R

» Control parameters:

. M P Planar maneuver

e A=CrL/CL((L/D)max)
o Atmospheric entry conditions




~
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R Mars Aero-Gravity Assist (3/4)

» Optimal control problem

Find the optimal control law, A(¢), the free atmospheric entry
conditions and the final time ¢ ¢ to Outgoing

« Maximize: Vi hyperbolic leg

- Final heliocentric velocity V.

e Subject to:

- atmospheric entry conditions
must be consistent with entry
COﬂdI’[IOﬂS.In planetary Atinospheric
sphere of influence phase

(V_, assigned) \

. : Incoming
Convective heating at /E; hyperbolic leg
stagnation point

oy . max
)<
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Mars Aero-Gravity Assist (4/4)

» Transcription technique: Multiple Shooting
e N=11, M =4 » dim(X) ~ 100
e Cubic splines

ALUZ'

e First guess using simple
shooting and evolutionary .,
algorithms

~ Soln 1/

100 200 300 400
Time [s]
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» Optimal control problem:

e Given the dynamics of the controlled 2 body problem:

LM
r — — r3 T+ u

Visit four given asteroids
e Maximize: J = mf/(tf —t9), myr=mg-e Ispgo ftf lu|dr
e Subject to:
- r(tdep,p) = TP(tdep,p)  V(tdep,P) = VP (tdep,P)
r(tarrp) =rp(tarrp) Vitarrp) =vVp(larr.p)

- fluf] < w™

- tdep,Pi — tarr,Pi_l < 90 dayS




GTOC Il (2/3)

» Transcription technique: Collocation

» Optimization variables:

- Four departure epochs
(Earth and three asteroids)

Four transfer times

Control parameters
deriving from transcription

State parameters deriving L e
. . 6L i : f ’ .....,l——Phase 2

from transcription | —phases
= = = ; i |~ Phase 4

dim(X) = 1000 I S B S R B

8
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GTOC Il (3/3)

» ldentified solution:

Collocation methods
can better describe
discontinuities

A

- Phase 1

— Phase 2

——Phase 3

——Phase 4
J

-Q*

6.4 65
Epoch [MJD]
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Multiple Shooting vs Collocation

» Both Multiple Shooting and Collocation can be considered
robust methods, even if highly nonlinear dynamics must
be dealt with

» Advantage of Collocation w.r.t. Multiple Shooting:

* Better management of discontinuities of the control
functions

» Disadvantage of Collocation w.r.t. Multiple Shooting:
* Higher number of variables
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Direct Methods vs Indirect Methods

» Main Advantages of Direct Methods:

* No need of deriving the equations related to the
necessary conditions for optimality

* More versatility and easier implementation in black-box
tools

» Main Disadvantage of Direct Methods:

* Need of numerical techniques to effectively estimate
Hessians and Jacobians

» Approximate methods
* Avoid both indirect and direct
e Suboptimal solutions




Definition of the original problem
u(t), L€ [ti, tf], u = (ul,u2,...,um)
ty
minimizing J=p(x(ty), ty) +/ L(x,u,t)dt
t;
with dynamics = f(r,u,t), == (z1,22,...,%n)

and boundary conditions x(t;) = x; Y(x(ty),u(ts),ty) =0

Note: control saturation, path constraints, variable
final time, etc., not considered for simplicity




-
Solution of the original problem
Hamiltonian of the problem H(x, A\ u,t) = L(xz,u,t) + AT f(x, u,t)

x(t), A(t), u(t), v that satisfy the necessary conditions

_0H P OH _
O - Oz ou

T

under x(t;) = x; Aty) = [(‘9@ + (8_1,b) 1/]

ox ox

t:tf

lterative methods used to solve (1)
: = Convergence depends on initial guess

= Guessing A, is not trivial (no physical meaning)
= Difficult to treat (algebraic-differential system)
= Deep knowledge of the problem required
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INF

Why approximate methods

Avoid solving problem (1)

Transform problem (1) into a simpler problem

Ease the computation of solutions

Deliver sub-optimal solutions

Examples

= Direct transcription [Hargraves&Paris 1987, Enright&Conway, Betts 1998]

= Generating function [Park&Scheeres, 2006]
= SDRE [Pearson 1962, Wernli&Cook 1975, Mracek&Cloutier 1998]

|:> = ASRE [Cimen&Banks 2004]
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(Time Varying) LQR

Dynamics: @ = A(t)z + B(t)u, Initial condition:  x(t;) = =;

ty
Obijective function: J = %a:T(tf)S(tf)a;(tf) + %/ " Q(t)x + u" R(t)u] dt,
t;

Necessary conditions of optimality

A(t)x + B(t)u, <

—A(t)

Linear system of 2n differential equations




S Solution of TVLQR by the STM

Exact solution of system (2): | Puz(tir ) Ts + Pun(tis t) N,
(z;, A;initial state, costate) | Pz (Lis )i + Pan(tis t) A,

(3)

b, Pzx, Przr ©x are the components Bt 1) — Gux(tist)  dun(ti,t)
of the state transition matrix (STM) T dae(ti,t) dan(ts,t)

q.ﬁacx q:bx)\ ] A(t) _B<t)R_1(t)BT(t) ] [ ¢xw ¢QB>\ ]

STM subject to [%x b || —0@) —AT@) Dre Do

Wlth ¢xm(tzatz> — Inxny ¢x>\<tz7tz) — Oana gbkx(tzytz) — Oanm gbk)\(tiyti) — Ian

through (3), and u(t)with w=—R~'(¢)B" (t)A
= A;computed by using (3) and the final condition (3 types)

SolveLQR.m

: = |If A; was known, it would be possible to compute x(t), A(t)

LQR solver available at http://www.astrodynamics.eu/Astrodynamics.eu/Software.htmi
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Hard constrained problem (HCP)

& = A()z + B(t)u,

* Final state given | i

I J=3 /t | f [T Q(t)x + u” R(t)u] dt,

Statement of HCP

Write the first of (3) at ¢t = s, Tp = Guz(tisty)Ti + dunltinty) N,

and solve for ), ; i.e., i@, gt tp) = ¢y (it y) [ — Pua(ti,ty)i]

> Solving a HCP requires inverting the n x nmatrix ¢z
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Soft constrained problem (SCP)

©=Alt)x+ Bt)u, x(t;) =z, Aty)=S(tp)z(ty),
Final state not given |

J = %wT(tf)S(tf)m(tf) + %/t 2" Q(t)x + u" R(t)u] dt

Statement of SCP

Grx(titr)Ti + Par(ti,tr) s,

i t=1
Write (3) at /s Paz(tisty)mi + Oax(tistr) A

and solve for A; ; i.e.,

Ai(w’ht’i?tf) — [Cbkk(ti?tf) - S(tf>¢$>\(ti7tf)] ' [S(tf)(bw;(ti:tf) - ¢Ax(ti7tf)] L;

) Solving a SCP requires inverting the n x nmatrix [éx(ti, ty) — S(ts)dar(ts, ty)]
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Mixed co‘nstrained problem (MCP)

= Some components = & =A)x + B(t)u, x(t:) = @i, zity) =iy, Aj(ty) =5(s)z;(ts)

of final state given | i L ]
(and some not) = 3% )S(tf)‘”j(tf)+§/ti (=" Q(t)x +u" R(t)u] dt

Statement of MCP ( agiven,  fige)

Write (3) at t = ty, write X\; = (A4, A ;)% and solve for \;;using i s(HCP)
and for Aij using A\;(ty) = S(ty)z;(ts) (SCP); i.e.,

T )‘i,’i<xi,i7 Lf iy t’ia tf>:¢;)iz (tza tf) [xf,z — ¢xm,i(ti7 tf>xz,z] 9
i (@i gy tis ) =D (tis ) — S(Ep)Punj (List )] [S(Ep)Pamj (tisty) — e (tisty)] i

- :> Solving a SCP requires inverting the

matrices ®zxi and [éar;(ti tr) — S(tf)bani(ti, ts)] ™"
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|dea of the method

Re-write the nonlinear problem as

original dynamics factorized dynamics

&= f(z,u,t), |:> & = Az, )z + Bz, u, t)u,

ty
J=p(x(ty),ty) —I—/ L(x,u,t)dt original objective function
t

U factorized objective function
1

Ly

J=gal(tg)S(@(ty), ty)a(ty) + %/ ' Q(z,t)x + u' R(z,t)u] dt
t;

|dea: to use state-dependent matrices  A(x,t), B(x,u,t), Q(x,t), R(x,t)

such that for given arguments z(¢), w(t) they depend on time only; i.e.,

A(Z(t),1), B(x(t),u(t),t), Q@(t),t), R(®(t),t) = A(t), B(t), Qt), R(t)
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The algorithm: iterations

lteration O - Find z'”(t), «”(¢) solving “Problem 0’ [i —x;, W=0
| £ = A(z;, )z + B(x4,0,t)u?,
| ] T
| L _or (0) L (Y7 or (0) | 4T (0)
T = 5O (t)S (@it )2 (k) + 5 [m Q(:?,t)a: tu R(:IT:Z-,t)u } dt
t;

lteration i - Find = (t), u'”(t) satisfying “Problem i" [i =zl u= u(i—l)}

&0 = AV 1), e + Bl (0, ul (1), ul,

! P

1 | | 1 [t | o | |
J=—2WT(t,)S(x" V) (tg), tf)fb‘@(tf)Jr—/ {CB@)TQ(w(Z_l) (1), ) D+ DTR(2 1 (1), t)u(z)]dt
t;

2 2 T T




The algorithm: convergence

Problem i = TVLQR |

= Each problem corresponds to a time-varying linear
quadratic regulator (TVLQR)

= The method requires solving a series of TVLQR
" lterations terminate when, for given

7 7 — ) 1—1 .
o) — 2 1>||m=t€rﬁa§f]{|x§><t>—x§ ), j=1.....n} <e¢

the difference between each component of
the state, evaluated for all times, changes by
less than € between two successive iterations
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Numerical examples

= Low-thrust dynamics in central vector field
= | ow-thrust rendez-vous
= | ow-thrust orbital transfer

= Low-thrust stationkeeping of GEO satellites
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Rendez-vous:

Dynamics
= 3,
T4,
2wy — (1 +21)(1/73 — 1) + uy,
—2x3 — x2(1/r% — 1) + us,

T:\/(ﬂ?1+1>2+$%

State

with

Control

L = (331,372,333,334) u = <u17u2>

Factorization (dynamics)
I 0 0
0 0
f(@1,2)(1 + 1/21) 0
0 f(ajla x2)

statement and factorization

= Rotating frame
x1 radial displacement
x2 transversal displacement
= Normalized units
= length unit = orbit radius
= timeunit=1/w

Initial condition

x; = (0.2,0.2,0.1,0.1)
[Park&Scheeres, 2006]

A(z)

with f(z1,2) = —1/[(w1 +1)* + 25]*/* +1
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Rendez-vous: HCP and SCP definition

HCP SCP

ty 1 1 Ly
J = —/ ul'udt J=—axl(t;)Sx(ts) + —/ ul'u dt
2/, 2 2/,

1 7

z;=(0,0,0,0), t; =0, t; =1 S = diag(25,15,10,10), t; =0, t; = 1
x(ts) free

Factorization (objective function)
with  QQ = Ogxa, R = Iaxo
1

tf
J = 5xT(1tf)S(tf):c(tf) + %/ 2" Q(t)x + u R(t)u] dt (S not defined in HCP)
t;

=  Termination tolerance ¢ = 10~?

(valid for all examples show)




Rendez-vous: results (HCP)

0.968

Problem  J  lter CPU Time (s) 09661

>HCP 09586 5 0.447 0.964f
SCP 0.5660 6 0492 ~ 1

0.962

CPU Time referred to an Intel
Core 2 Duo 2 GHz with 4 GB
RAM running Mac OS X 10.6

0.96r

0.958

SolveNL.m




Rendez-vous: results (SCP)

0.5695,

0.5691

Problem  J  Iter CPU Time (s)

HCP 09586 5 0.447
[>SCP 05660 6 0492 ~

0.5675}

0.5685}

0.568F

CPU Time referred to an Intel 0567

Core 2 Duo 2 GHz with 4 GB 05665}
RAM running Mac OS X 10.6

0.566

1

SolveNL.m
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Orbital transfer: statement

Dynamics * Rotating frame (polar
i = a3, coordinates)

To = T4, x1 radial distance

. 2 2
Ty = @y - a1+, r2angular phase
Ty = —2x374/x1 + U/77.

= Normalized units
State Control

= |ength unit = initial orbit radius
L = (331,55‘2,333,564) u = (’U,l,’U,2>

= time unit = 1/w (initial orbit)
Objective function

Initial condition

t _
/fuTudt ti=0 by =m x; = (1,0,0,1)
t

7

Final conditions

ProblemA s = (1.52,7,0,/1/1.52)

ProblemB  x; = (1.52,1.5m,0,4/1/1.52)
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Factorization

0

0
—1/x3

0

Results

<
£
Q
o
o
o

Problem B

Orbital transfer: results

Problem J o lter

CPU Time (s)

A mp=m1 0529 22
B =151 48665 123

6.262
47.865




Stationkeeping: statement

T4, Dynamics State
L5, L = (331,332,.273,334,335,336)

‘/’U Y
? 2 2 Control
_CU_% +x1x6+x1<x5+1) cos x3+a1($1,$27gj3>_|_u1, u = (ulyu27u3)

L a2{L1,x2,T u
25136(5(35—|—1>tan3;3_2_4(x5_|_1)_|_ 2( 1, L2 3)_|_ 2
L1 Tq cosazg

1 COS T3’

a3(:1:1,x2,:133 us

Iy .
—2—ux6 — (x5 + 1)*sinz3 cos 3 +
L1 L1 L1

Initial condition Rotating frame (spherical coordinates)
x; = (1,0.05 x 180/7,0.05 x 180/7,0,0,0) ¢; =0 T1 radial distance

I2 longitude deviation

Y

Final condition x3 latitude

v =1 wpjfree j=2,...,6 ty=m Normalized units
= length unit = GEO radius
Objective function = time unit = 1 /w (initial orbit)
Q = diag((), 1,1,1,1, 1)7 Reference longitude = 60 E
R = diag(l, 1, 1)7 Perturbations a1, ao, a3

S = 100diag(1,1,1,1,1)
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Stationkeeping: factorization

Factorization

Os3 I33

agq 0 0 a4s 0
0 0 as4 QAsz5 PO R R 0
1

agr 0 g4 Q65 >

- 'S -

—% + 17 + (ax? + 20375 + 1) cos® 3,  asg 2+ 2(1 — B1)xs5] tan x3,
(1 — ag)z125 + 2(1 — 3)] cos? x3, a1 2; sin 2x3,
= (1 — ozl):vlasg, ae4 —2(1 — ”71)_3767
= —% —2(1 — ﬁg)%ﬂff,, aes [—%565 — 1] sin 2x3,
= 2015 tanxz — 2023*, ag6 = —271,+
- a1, Qa, a3, B1, B2, 7Yiree parameters [Topputo&Bernelli-Zazzera 2011]

Canvary in [0, 1]
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Stationkeeping: results

Manoeuver = Control cycle

= Free drift (2.5 days)
= Maneuver (0.5 day)

1 year stationkeeping simulated in [Topputo&Bernelli-Zazzera 2011]
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Final Remarks

» All the previous numerical techniques for optimization are
eventually based on the use of the Newton method:

e Direct methods P  Solution of the nonlinear system of
equations related to the necessary
conditions for optimality

e Indirect methods P  Solution of the boundary value
problem on the DAE system

e Approx methods P Solution of TVLQR, no need of first
guess solution, but suboptimal

They suffer of the same disadvantages:

 Local convergence, i.e., they tend to converge to solutions
close to the supplied first guesses

 Need of “good” first guesses for the solution

= Note: global optimization is another matter!
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