An overview of optimal control methods with applications

F. Topputo and P. Di Lizia

Dinamica Srl

Stardust - Opening Training School University of Strathclyde Glasgow, UK

The Company

- Founded by 5 partners in January 2008
- All partners have a PhD in Aerospace Engineering
- Dinamica Srl has a strong connection with Academia
- More than 30 years of accumulated space experience
- Dinamica Srl is located in Milano

Keywords

SATELLITE TECHNOLOGY LTD

System engineering

Optimization

Optimization

Mission analysis

Autonomy

The mission

- Italian SME, founded in 2008
- The mission: "... to carry on developing methods and advanced solutions within the Space field and to transfer their use in other industrial sectors ..."

A Tangible Example

Hubble

Pharmaceutical industry

Used to reconstruct unmodeled structural dynamics

Used to reduce vibrations in large telescope satellites

Used to reconstruct a pharmaceutical process dynamics

Used to minimize the energy supply

Optimal Control Problem (1/2)

- Consider the following dynamical system:

$$
\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)
$$

where: $\mathbf{x}=\left\{x_{1}, \ldots, x_{n}\right\}^{T}$ is the state vector and

$$
\mathbf{u}=\left\{u_{1}, \ldots, u_{m}\right\}^{T} \text { is the control vector }
$$

- Determine the m control functions such that the following performance index is minimized:

$$
J=\varphi\left(\mathrm{x}_{f}, t_{f}\right)+\int_{t_{0}}^{t_{f}} L(\mathbf{x}(t), \mathbf{u}(t), t) d t
$$

where the initial and final state vectors, x_{0} and x_{f}, as well as the final time t_{f}, are not necessarily fixed

Optimal Control Problem (2/2)

- In addition to the previous statements suppose that the following constraints are imposed
- Boundary conditions at final time t_{f} :

$$
\psi\left(\mathbf{x}_{f}, t_{f}\right)=0, \text { where } \psi=\left\{\psi_{1}, \ldots, \psi_{p}\right\}
$$

- Path constraints on the control variables:

$$
\mathbf{C}(\mathbf{u}(t), t) \leq 0, \text { where } \mathbf{C}=\left\{C_{1}, \ldots, C_{q}\right\}
$$

- Two classical solution methods:
- Indirect methods: based on reducing the optimal control problem to a Boundary Value Problem (BVP)
- Direct methods: based on reducing the optimal control problem to a nonlinear programming problem

Example: Low-Thrust Earth-Mars Transfer

- Given the dynamics of the controlled 2 body problem:

$$
\ddot{\mathbf{r}}=-\frac{\mu}{\mathrm{r}^{3}} \cdot \mathbf{r}+\mathbf{u}
$$

- Minimize: $\quad J=\int_{t_{0}}^{t_{f}} L(\mathbf{x}, \mathbf{u}, t) \mathrm{d} t=\frac{1}{2} \int_{t_{0}}^{t_{f}} \mathbf{u} \cdot \mathbf{u}^{T} \mathrm{~d} t$
- Subject to equality constraints:

$$
\begin{array}{ll}
\mathbf{r}\left(t_{0}\right)=\mathbf{r}_{E}\left(t_{0}\right) & \mathbf{v}\left(t_{0}\right)=\mathbf{v}_{E}\left(t_{0}\right) \\
\mathbf{r}\left(t_{f}\right)=\mathbf{r}_{M}\left(t_{f}\right) & \mathbf{v}\left(t_{f}\right)=\mathbf{v}_{M}\left(t_{f}\right)
\end{array}
$$

- and the inequality constraints $\mathbf{C}(\mathbf{u}(t), t) \leq 0:\|\mathbf{u}\| \leq \mathbf{u}^{\max }$

Indirect Methods (1/6)

- Reconsider the optimal control problem:

Given the dynamical system $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)$

- Minimize: $\quad J=\varphi\left(\mathbf{x}_{f}, t_{f}\right)+\int_{t_{0}}^{t_{f}} L(\mathbf{x}(t), \mathbf{u}(t), t) d t$
- Subject to: $\boldsymbol{\psi}\left(\mathbf{x}_{f}, t_{f}\right)=0$ and $\mathbf{C}(\mathbf{u}(t), t) \leq 0$
- Constraints are added to the performance index J by introducing two kinds of Lagrange multipliers:
- a p-dimensional vector of constants ν for the final constraints
- two n - and a q-dimensional vectors of functions $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$ (adjoint or costate variables) for dynamics and path constraints

Indirect Methods (2/6)

- Augmented performance index:

$$
\begin{aligned}
\bar{J}= & \varphi\left(\mathbf{x}_{f}, t_{f}\right)+\boldsymbol{\nu}^{T} \boldsymbol{\psi}\left(\mathbf{x}_{f}, t_{f}\right)+ \\
& +\int_{t_{0}}^{t_{f}}\left(L(\mathbf{x}(t), \mathbf{u}(t), t)+\boldsymbol{\lambda}^{T}(\mathbf{f}(\mathbf{x}, \mathbf{u}, t)-\dot{\mathbf{x}})+\boldsymbol{\mu}^{T} \mathbf{C}(\mathbf{u}(t), t)\right) d t
\end{aligned}
$$

- The dynamics is included in the augmented performance index as a constraint
- Moreover, pertaining the costate variables for the path inequality constraints $\boldsymbol{\mu}$, the generic component μ_{k} must satisfy the following relations:

$$
\left\{\begin{aligned}
C_{k}(\mathbf{u}(t), t)<0 & \Rightarrow \quad \mu_{k}(t)=0 \\
C_{k}(\mathbf{u}(t), t)=0 & \Rightarrow \quad \mu_{k}(t) \geq 0
\end{aligned}\right.
$$

Indirect Methods (3/6)

- Integrating by parts the term $\lambda^{T} \dot{\mathrm{x}}$ yields:

$$
\begin{aligned}
\bar{J}= & \varphi\left(\mathbf{x}_{f}, t_{f}\right)+\nu^{T} \psi\left(\mathbf{x}_{f}, t_{f}\right)-\lambda_{f}^{T} \mathbf{x}_{f}+\lambda_{0}^{T} \mathbf{x}_{0}+ \\
& +\int_{t_{0}}^{t_{f}}\left(L(\mathbf{x}(t), \mathbf{u}(t), t)+\boldsymbol{\lambda}^{T} \mathbf{f}(\mathbf{x}, \mathbf{u}, t)+\dot{\lambda}^{T} \mathbf{x}+\boldsymbol{\mu}^{T} \mathbf{C}(\mathbf{u}(t), t)\right) d t
\end{aligned}
$$

$$
\text { where } \boldsymbol{\lambda}_{f}=\boldsymbol{\lambda}\left(t_{f}\right) \text { and } \boldsymbol{\lambda}_{0}=\boldsymbol{\lambda}\left(t_{0}\right)
$$

- The problem is then reduced to identify a stationary point of \bar{J}. This is achieved by imposing the gradient to be zero. The optimization variables are:
- State vector \mathbf{X} and control vector \mathbf{u}
- Lagrange multipliers and costate variables $\boldsymbol{\nu}, \boldsymbol{\lambda}$ and $\boldsymbol{\mu}$
- Unknown components of the initial state $\mathbf{x}_{0}, i=\bar{k}+1, \ldots, n$
- Final state and time \mathbf{x}_{f} and t_{f}

Indirect Methods (4/6)

$$
\begin{array}{|llll|}
\hline \frac{\partial \bar{J}}{\partial \boldsymbol{\lambda}}=0 & \Rightarrow & \dot{\mathbf{x}}=\mathrm{f}(\mathrm{x}(t), \mathbf{u}(t), t) & \text { Dynamics } \\
\frac{\partial \bar{J}}{\partial \mathbf{x}}=0 & \Rightarrow & \dot{\boldsymbol{\lambda}}=-\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)^{T} \boldsymbol{\lambda}-\left(\frac{\partial L}{\partial \mathbf{x}}\right)^{T} \\
\frac{\partial \bar{J}}{\partial \mathbf{u}}=0 & \Rightarrow & \left(\frac{\partial L}{\partial \mathbf{u}}\right)^{T}+\left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)^{T} \boldsymbol{\lambda}+\left(\frac{\partial \mathbf{C}}{\partial \mathbf{u}}\right)^{T} \boldsymbol{\mu}=0 \\
\hline \hline \frac{\partial \bar{J}}{\partial x_{i, 0}}=0 & \Rightarrow & \lambda_{i, 0}=0 \quad(i=\bar{k}+1, \ldots, n) & \\
\frac{\partial \bar{J}}{\partial \mathbf{x}_{f}}=0 & \Rightarrow & \boldsymbol{\lambda}_{f}=\left(\frac{\partial \varphi}{\partial \mathbf{x}_{f}}\right)^{T}+\left(\frac{\partial \boldsymbol{\psi}}{\partial \mathbf{x}_{f}}\right)^{T} \boldsymbol{\nu} & \text { Constraints } \\
\frac{\partial \bar{J}}{\partial \boldsymbol{\nu}}=0 & \Rightarrow & \boldsymbol{\psi}\left(\mathbf{x}_{f}, t_{f}\right)=0 \\
\frac{\partial \bar{J}}{\partial \boldsymbol{\mu}} \leq 0 \quad & \Rightarrow \quad \mathbf{C}(\mathbf{u}(t), t) \leq 0 \\
\frac{\partial \bar{J}}{\partial t_{f}}=0 & \Rightarrow & \left(\frac{\partial \varphi}{\partial \mathbf{x}_{f}}\right) \mathrm{f}\left(\mathbf{x}_{f}, \mathbf{u}_{f}, t_{f}\right)+\frac{\partial \varphi}{\partial t_{f}}+\boldsymbol{\nu}^{T}\left(\left(\frac{\partial \boldsymbol{\psi}}{\partial \mathbf{x}_{f}}\right) \mathrm{f}\left(\mathbf{x}_{f}, \mathbf{u}_{f}, t_{f}\right)+\left(\frac{\partial \boldsymbol{\psi}}{\partial t_{f}}\right)\right) \\
& +L\left(\mathbf{x}_{f}, \mathbf{u}_{f}, t_{f}\right)+\boldsymbol{\mu}\left(t_{f}\right)^{T} \mathbf{C}\left(\mathbf{u}_{f}, t_{f}\right)=0
\end{array}
$$

Indirect Methods (5/6)

- The problem consists on finding the functions $\mathbf{x}(t), \boldsymbol{\lambda}(t)$ and $\mathbf{u}(t)$ by solving the differential-algebraic system:

$$
\begin{aligned}
& \text { differential }\left\{\begin{array}{l}
\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t) \\
\dot{\boldsymbol{\lambda}}=-\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)^{T} \boldsymbol{\lambda}-\left(\frac{\partial L}{\partial \mathbf{x}}\right)^{T} \\
\text { algebraic }\left\{\left(\frac{\partial L}{\partial \mathbf{u}}\right)^{T}+\left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)^{T} \boldsymbol{\lambda}+\left(\frac{\partial \mathbf{C}}{\partial \mathbf{u}}\right)^{T} \boldsymbol{\mu}=0\right.
\end{array}\right] \text { Euler-Lagrange } \\
& \text { equations }
\end{aligned}
$$

Note: For the sake of a more compact notation, define the Hamiltonian

$$
H(\mathbf{x}, \mathbf{u}, \boldsymbol{\lambda}, t)=L(\mathbf{x}(t), \mathbf{u}(t), t)+\boldsymbol{\lambda}(t)^{T} \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)+\boldsymbol{\mu}(t)^{T} \mathbf{C}(\mathbf{u}(t), t)
$$

The previous equations read: $\quad \dot{\mathrm{x}}=H_{\lambda}, \quad \dot{\boldsymbol{\lambda}}=-H_{x}, \quad H_{u}=0$

Indirect Methods (6/6)

- The previous differential-algebraic system must be coupled to the $2 n$ boundary conditions

$$
\left\{\begin{array}{c}
x_{i, 0} \quad \text { given or } \quad \lambda_{i, 0}=0 \quad i=1, \ldots, n \\
\lambda_{f}=\left(\frac{\partial \varphi}{\partial \mathbf{x}_{f}}\right)^{T}+\left(\frac{\partial \psi}{\partial \mathbf{x}_{f}}\right)^{T} \nu
\end{array}\right.
$$

and to the $p+q+1$ additional constraints

$$
\left\{\begin{array}{l}
\psi\left(\mathbf{x}_{f}, t_{f}\right)=0 \\
\mathbf{C}(\mathbf{u}(t), t) \leq 0 \\
\left(\frac{\partial \varphi}{\partial \mathbf{x}_{f}}\right) \mathbf{f}_{f}+\frac{\partial \varphi}{\partial t_{f}}+\nu^{T}\left(\left(\frac{\partial \psi}{\partial \mathbf{x}_{f}}\right) \mathbf{f}_{f}+\left(\frac{\partial \psi}{\partial t_{f}}\right)\right)+L_{f}+\mu_{f}^{T} \mathbf{C}_{f}=0
\end{array}\right.
$$

The optimal control problem is reduced to a boundary value problem on a differential-algebraic system of equations (DAE)

Assignment \#1

- Given the simple optimal control problem (Problem \#1)

$$
\begin{aligned}
& \dot{x}_{1}=0.5 x_{1}+u \\
& \dot{x}_{2}=u^{2}+x_{1} u+\frac{5}{4} x_{1}^{2} \quad J=x_{2}(1)
\end{aligned}
$$

Dynamics
b. c.

Obj. fcn.

$$
\begin{array}{ll}
x_{1}(0)=1 & t_{i}=0 \\
x_{2}(0)=0 & t_{f}=1
\end{array}
$$

- Write the necessary conditions for optimality and show that the optimal solution is

$$
\begin{aligned}
x_{1}(t) & =\frac{\cosh (1-t)}{\cosh (1)} \\
u(t) & =\frac{-(\tanh (1-t)+0.5) \cosh (1-t)}{\cosh (1)}
\end{aligned}
$$

Optimal solution

Low-Thrust Transfer to Halo Orbit (1/4)

- Transfer the s/c from a given orbit (GTO raising) to a Halo orbit around L1 of the Earth-Moon system
- Dynamics:

$$
\begin{array}{r}
\ddot{x}-2 \dot{y}=\frac{\partial \Omega_{3}}{\partial x}+u_{1} \\
\ddot{y}+2 \dot{x}=\frac{\partial \Omega_{3}}{\partial y}+u_{2} \\
\ddot{z}=\frac{\partial \Omega_{3}}{\partial z}+u_{3} \\
\mathbf{x}=\{x, y, z, \dot{x}, \dot{y}, \dot{z}\}^{T} \\
\mathbf{u}=\left\{u_{1}, u_{2}, u_{3}\right\}^{T}
\end{array}
$$

Low-Thrust Transfer to Halo Orbit (2/4)

- In canonical form, the dynamics reads: $\dot{\mathrm{x}}=\mathrm{f}(\mathrm{x}, \mathbf{u})$
- Performance index: minimize the quadratic functional

$$
J=\int_{t_{0}}^{t_{f}} L(\mathbf{x}, \mathbf{u}, t) \mathrm{d} t=\frac{1}{2} \int_{t_{0}}^{t_{f}} \mathbf{u} \cdot \mathbf{u}^{T} \mathrm{~d} t
$$

-Constraints: fixed x_{0} and x_{f}, fixed final time t_{f}

- Euler-Lagrange equations:

$$
\begin{array}{ll}
\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t) & \dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \mathbf{u}) \\
\dot{\boldsymbol{\lambda}}=-\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)^{T} \boldsymbol{\lambda}-\left(\frac{\partial L}{\partial \mathbf{x}}\right)^{T} & \dot{\lambda}=-\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)^{T} \boldsymbol{\lambda} \\
\left(\frac{\partial L}{\partial \mathbf{u}}\right)^{T}+\left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)^{T} \boldsymbol{\lambda}+\left(\frac{\partial \mathbf{C}}{\partial \mathbf{u}}\right)^{T} \boldsymbol{\mu}=0 & 0=\frac{\partial H}{\partial \mathbf{u}}
\end{array}
$$

Low-Thrust Transfer to Halo Orbit (3/4)

- Processing the last algebraic equation leads to:
$\left(\frac{\partial L}{\partial \mathbf{u}}\right)^{T}+\left(\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right)^{T} \boldsymbol{\lambda}+\left(\frac{\partial \mathbf{C}}{\partial \mathbf{u}}\right)^{T} \boldsymbol{\mu}=0>u_{i}=-\lambda_{3+i}, i=1, \ldots, 3$
which can be inserted in the differential equations

The DAE system is reduced to a ODE system

- All constraints simply reduce to:

$$
\begin{aligned}
\mathbf{x}\left(t_{0}\right)-\mathbf{x}_{0} & =0 \\
\mathbf{x}\left(t_{f}\right)-\mathbf{x}_{f} & =0
\end{aligned}
$$

The original problem is reduced to a "simple" Two Point Boundary Value Problem (TPBVP)

Low-Thrust Transfer to Halo Orbit (4/4)

- Solution of the TPBVP:
- Transcribe the dynamics $(\mathbf{x}, \lambda)>\left(\mathrm{x}_{0}, \boldsymbol{\lambda}_{0}, \ldots, \mathrm{x}_{N}, \boldsymbol{\lambda}_{N}\right)$
- Couple the transcribed dynamics with the constraints on ${ }^{\mathbf{x}_{0}}$ and \mathbf{x}_{f}
- Solve the resulting system with a Newton method starting from a suitable initial condition
- Evaluate the control parameters $\left(\mathbf{u}_{0}, \ldots, \mathbf{u}_{N}\right)$

End-to-end optimization w/ finite thrust

- GTO-to-halo fully optimized
- very difficult problem
- tens of spirals
- thrust saturation

$$
\begin{aligned}
\ddot{x}-2 \dot{y}=\frac{\partial \Omega_{3}}{\partial x}+\frac{T_{x}}{m}, & \ddot{y}+2 \dot{x}=\frac{\partial \Omega_{3}}{\partial y}+\frac{T_{y}}{m} \\
\ddot{z}=\frac{\partial \Omega_{3}}{\partial z}+\frac{T_{z}}{m}, & \dot{m}=-\frac{T}{I_{\mathrm{sp}} g_{0}}
\end{aligned}
$$

$$
J=\int_{t_{0}}^{t_{f}} \frac{T(\tau)}{I_{\text {sp }} g_{0}} \mathrm{~d} \tau
$$

Optimal solution

Assignment \#2

- Given Problem \#1

$$
\begin{aligned}
& \dot{x}_{1}=0.5 x_{1}+u \\
& \dot{x}_{2}=u^{2}+x_{1} u+\frac{5}{4} x_{1}^{2} \quad J=x_{2}(1)
\end{aligned}
$$

Obj. fcn.

$$
\begin{array}{ll}
x_{1}(0)=1 & t_{i}=0 \\
x_{2}(0)=0 & t_{f}=1
\end{array}
$$

b. c.
init., final time

- Solve the TPBVP associated
- Matlab built-in bvp4c, bvp5c
- Sixth-order method bvp_h6
(a) discrete solution and analytical time history of x_{1}

(b) discrete solution and analytical time history of u

Indirect Methods: Remarks

- Main Difficulties:
- Deriving Euler-Lagrange equations and transversality conditions for the problem at hand
- Nonlinearity of the dynamics
- Solution of the DAE system itself
- Solution of the boundary value problem on the DAE system
- Lack of a plain physical meaning of Lagrange multipliers
$>$ difficulty at identifying good first guesses for Lagrange multipliers (primer vector theory)

Optimal Control Problem

- Given a dynamical system: $\quad \dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)$
- Determine $\mathbf{u}(t)$ which minimize the performance index:

$$
J=\varphi\left(\mathbf{x}_{f}, t_{f}\right)+\int_{t_{0}}^{t_{f}} L(\mathbf{x}(t), \mathbf{u}(t), t) d t
$$

- and satisfy the constraints: $\boldsymbol{\psi}\left(\mathbf{x}_{f}, t_{f}\right)=0 \quad \mathbf{C}(\mathbf{u}(t), t) \leq 0$
- Two classical solution methods:
- Indirect methods: based on reducing the optimal control problem to a Boundary Value Problem (BVP)
- Direct methods: based on reducing the optimal control problem to a nonlinear programming problem

Nonlinear Programming Problem

- Generally constrained optimization problem Given a function $\quad f(\boldsymbol{x})=f\left(x_{1}, x_{2}, \ldots, x_{v}\right)$
- Minimize:

$$
f(\boldsymbol{x})
$$

- Subject to K equality constraints:

$$
c_{k}(\boldsymbol{x})=0, \quad k=1, \ldots, K \quad(K \leq v)
$$

and J inequality constraints:

$$
g_{j}(\boldsymbol{x}) \geq 0, \quad j=1, \ldots, J
$$

where J can exceed v

Unconstrained Optimization (1/6)

- Minimize: $\quad f(\boldsymbol{x})$
- The necessary condition for the identification of the optimum is:

$$
\nabla_{\boldsymbol{x}} f=0
$$

The optimization problem in the v variables \boldsymbol{x} is reduced to the solution of a system of v nonlinear equations Note: given the Hessian of f, \mathbf{H}_{f}, a sufficient condition is:

$$
\boldsymbol{x} \mathbf{H}_{f} \boldsymbol{x}>0, \quad \forall \boldsymbol{x}
$$

- The solution can be found using the Newton method

Newton Method (1/3)

- Consider the problem:

$$
F(x)=0
$$

- The Newton method is an iterative method based on a linearization of F around the current iterate

1. Select an initial guess \hat{x}
2. Consider the first order approximation of F

$$
F(x) \approx F(\hat{x})+F^{\prime}(\hat{x}) \cdot(x-\hat{x})=0
$$

3. Find the correction:

$$
\Delta x=(x-\hat{x})=-\left[F^{\prime}(\hat{x})\right]^{-1} \cdot F(\hat{x})
$$

4. Update current iterate and repeat from 2 until convergence

Newton Method (2/3)

- Graphical interpretation:

- Since it is based on a first order approximation of F the method is "local"

Different first guesses might lead to different solutions

Newton Method (3/3)

- Classical methods to stabilize the iteration
- Line Search:

Instead of updating the current iterate using

$$
\hat{x}_{\text {new }}=\hat{x}+\Delta x
$$

Reduce the step size using a parameter α :

$$
\hat{x}_{\mathrm{new}}=\hat{x}+\alpha \Delta x
$$

where α is chosen such that

$$
\left\|F\left(\hat{x}_{\text {new }}\right)\right\| \leq\|F(\hat{x})\|
$$

- Trust region:

The direction of the computed Δx is slightly modified

Unconstrained Optimization (2/5)

- Solve: $\nabla_{x} f=0$

Newton algorithm:

- Select an initial guess \boldsymbol{x}
- While stopping criterion is not satisfied
- Find the corrections Δx to the current solution by solving the linear system

$$
\mathbf{H}_{f} \Delta \boldsymbol{x}=-\nabla_{\boldsymbol{x}} f
$$

where \mathbf{H}_{f} is the Hessian of $f: \mathbf{H}_{f}=\nabla_{\boldsymbol{x}}^{2} f$

- Update the current solution: $\boldsymbol{x}>\boldsymbol{x}+\Delta \boldsymbol{x}$

Unconstrained Optimization (3/5)

Important note:

- Consider the following optimization problem
- Minimize the quadratic form:

$$
\frac{1}{2} \Delta \boldsymbol{x}^{T} \mathbf{H}_{f} \Delta \boldsymbol{x}+\nabla_{\boldsymbol{x}} f^{T} \Delta \boldsymbol{x}
$$

- Necessary optimality conditions:

$$
\mathbf{H}_{f} \Delta \boldsymbol{x}+\nabla_{\boldsymbol{x}} f=0
$$

which can be written as:

$$
\mathbf{H}_{f} \Delta \boldsymbol{x}=-\nabla_{\boldsymbol{x}} f
$$

Finding the corrections $\Delta \boldsymbol{x}$, i.e. the search direction, in the original optimization problem is equivalent to minimizing the previous quadratic form

Unconstrained Optimization (4/5)

- Given the function to be minimized, $f(\boldsymbol{x})$, each iteration of the Newton method is equivalent to:
- Approximate f around the current solution \boldsymbol{x} with a quadratic form
- Find the offset, $\Delta \boldsymbol{x}$, to the zero-gradient point of the quadratic form
- Use Δx as a correction in the original optimization problem

Unconstrained Optimization (5/5)

$$
f\left(x_{1}, x_{2}\right)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)
$$

$$
f\left(x_{1}, x_{2}\right)=\frac{x_{1}^{4}}{10}-10 x_{1}^{2}+10 x_{1}+x_{2}^{2}
$$

$$
f\left(x_{1}, x_{2}\right)=5 x_{1}+e^{-\left(x_{1}+5\right)}+x_{2}^{2}
$$

Assignment \#3

- Numerically re-compute the three unconstrained optimizations in the previous slide; i.e.,

$$
\begin{gathered}
f\left(x_{1}, x_{2}\right)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right) \\
f\left(x_{1}, x_{2}\right)=5 x_{1}+e^{-\left(x_{1}+5\right)}+x_{2}^{2} \\
f\left(x_{1}, x_{2}\right)=\frac{x_{1}^{4}}{10}-10 x_{1}^{2}+10 x_{1}+x_{2}^{2}
\end{gathered}
$$

- Advice
- Use Matlab built-in fminunc
- Code a SQP solver

Earth-Mars 2-impulse Transfer (1/3)

- Optimization variables: departure date t_{0} and time of flight $t_{t o f}$
- Compute the positions of the starting and arrival planets through the ephemerides evaluation:
$\left(\boldsymbol{r}_{E}, \boldsymbol{v}_{E}\right)=e p h\left(t_{0}\right.$, Earth $),\left(\boldsymbol{r}_{M}, \boldsymbol{v}_{M}\right)=e p h\left(t_{0}+t_{t o f}\right.$, Mars $)$
- Solve the Lambert's problem to evaluate the escape velocity \boldsymbol{v}_{1} and the arrival one \boldsymbol{v}_{2}
- Objective function: $\Delta V=\Delta V_{1}+\Delta V_{2}$

Earth-Mars 2-impulse Transfer (2/3)

- Minimize: $f(\boldsymbol{x})=\Delta V(\boldsymbol{x})=\Delta V\left(t_{0}, t_{t o f}\right)$
- Necessary conditions for optimality: $\nabla_{x} f=0$

$$
\frac{\partial \Delta V}{\partial t_{0}}=0 \quad \frac{\partial \Delta V}{\partial t_{t o f}}=0
$$

- In a generic iteration, given the current estimate
$\boldsymbol{x}=\left\{t_{0}, t_{t o f}\right\}$, evaluate the corrections $\Delta \boldsymbol{x}=\left\{\Delta t_{0}, \Delta t_{t o f}\right\}:$
$\mathbf{H}_{f} \Delta \boldsymbol{x}=-\nabla_{\boldsymbol{x}} f$
where \mathbf{H}_{f} is:

$$
\left[\begin{array}{cc}
\frac{\partial^{2} \Delta V}{\partial^{2} t_{0}} & \frac{\partial^{2} \Delta V}{\partial t_{0} \partial t_{t o f}} \\
\frac{\partial^{2} \Delta V}{\partial t_{t o f} \partial t_{0}} & \frac{\partial^{2} \Delta V}{\partial^{2} t_{t o f}}
\end{array}\right]
$$

Earth-Mars 2-impulse Transfer (3/3)

- Search space:
$t_{0} \in[0,1460] M J D 2000 \cong 4$ years
$t_{t o f} \in[100,600]$ day

Equality Constrained Optimization (1/5)

- Minimize: $\quad f(\boldsymbol{x})$

Subject to: $\quad c_{k}(\boldsymbol{x})=0, \quad k=1, \ldots, K \quad(K \leq v)$

- The classical approach to the solution of the previous problem is based on the method of Lagrange multipliers

Method of Lagrange multipliers:

- Introduce the Lagrange function:

$$
L(\boldsymbol{x}, \lambda)=f(\boldsymbol{x})-\lambda^{T} \cdot \boldsymbol{c}(\boldsymbol{x})
$$

where L is a function of the v variables \boldsymbol{x} and the K Lagrange multipliers λ

Equality Constrained Optimization (2/5)

- The necessary conditions for the identification of the optimum are:

$$
\begin{aligned}
\nabla_{x} L(\boldsymbol{x}, \lambda) & =\nabla_{x} f(\boldsymbol{x})-\mathbf{C}^{T}(\boldsymbol{x}) \cdot \lambda=0 \\
\nabla_{\lambda} L(\boldsymbol{x}, \lambda) & =\boldsymbol{c}(\boldsymbol{x})=0
\end{aligned}
$$

where $\mathbf{C}(\boldsymbol{x})$ is the Jacobian of $\boldsymbol{c}(\boldsymbol{x})$

The constrained optimization problem in the v variables \boldsymbol{x} has been reduced to the solution of a system of $v+K$ equations in the $v+K$ variables $(\boldsymbol{x}, \lambda)$

- Solution by Newton method

Equality Constrained Optimization (3/5)

Algorithm:

- Select an initial guess $(\boldsymbol{x}, \lambda)$
- While stopping criterion is not satisfied
- Find the corrections $(\Delta x, \Delta \lambda)$ to the current solution by solving the linear system

$$
\left[\begin{array}{cc}
\mathbf{H}_{L} & -\mathbf{C}^{T} \\
\mathbf{C} & 0
\end{array}\right]\left\{\begin{array}{l}
\Delta \boldsymbol{x} \\
\Delta \lambda
\end{array}\right\}=\left\{\begin{array}{l}
-\nabla_{x} f \\
-\boldsymbol{c}
\end{array}\right\} \begin{aligned}
& \text { Karush-Kuhn- } \\
& \text { Tucker (KKT) }
\end{aligned}
$$

where $\quad \mathbf{H}_{L}=\nabla_{x x}^{2} f-\sum_{k=1}^{K} \lambda_{k} \nabla_{x x}^{2} c_{k}$

- Update the current solution: $(\boldsymbol{x}, \lambda)>(\boldsymbol{x}+\Delta \boldsymbol{x}, \lambda+\Delta \lambda)$

Equality Constrained Optimization (4/5)

Important note:

- Consider the following optimization problem:
- Minimize the quadratic form:

$$
\frac{1}{2} \Delta \boldsymbol{x}^{T} \mathbf{H}_{L} \Delta \boldsymbol{x}+\left(\nabla_{\boldsymbol{x}} f\right)^{T} \Delta \boldsymbol{x}
$$

- Subject to the linear constraints:

$$
\mathbf{C} \Delta x=-c
$$

- Use the approach of Lagrange multipliers
- Lagrange function:

$$
\frac{1}{2} \Delta \boldsymbol{x}^{T} \mathbf{H}_{L} \Delta \boldsymbol{x}+\left(\nabla_{\boldsymbol{x}} f\right)^{T} \Delta \boldsymbol{x}-\lambda^{T} \cdot(\mathbf{C} \Delta \boldsymbol{x}+\boldsymbol{c})
$$

Equality Constrained Optimization (5/5)

- Necessary optimality conditions:

$$
\begin{aligned}
& \mathbf{H}_{L} \Delta \boldsymbol{x}+\nabla_{\boldsymbol{x}} f-\mathbf{C}^{T} \cdot \lambda=0 \\
& \mathbf{C} \Delta \boldsymbol{x}+\boldsymbol{c}=0
\end{aligned}
$$

which can be written as:

$$
\left[\begin{array}{cc}
\mathbf{H}_{L} & -\mathbf{C}^{T} \\
\mathbf{C} & 0
\end{array}\right]\left\{\begin{array}{c}
\Delta \boldsymbol{x} \\
\lambda
\end{array}\right\}=\left\{\begin{array}{l}
-\nabla_{x} f \\
-\boldsymbol{c}
\end{array}\right\} \begin{aligned}
& \text { Karush-Kuhn- } \\
& \text { Tucker (KKT) }
\end{aligned}
$$

Finding the corrections $(\Delta \boldsymbol{x}, \Delta \lambda)$, i.e. the search direction, in the original optimization problem using the KKT system is equivalent to minimizing the previous quadratic form

Inequality Constrained Optimization

- Minimize: $\quad f(x)$

Subject to: $\quad g_{j}(x) \geq 0, \quad j=1, \ldots, J$
A possible approach

- Interior Point Method:

The inequality constraints are added to the objective function as a penalty term

$$
\tilde{f}(\boldsymbol{x})=f(\boldsymbol{x})+\sum_{j=1}^{J} \mu_{j} e^{-g_{j}(\boldsymbol{x})}
$$

Solution is forced to move into the set of feasible solutions by means of the barrier function $e^{-g_{j}}$

Assignment \#4

- Solve the NLP problem"

$$
\begin{array}{ll}
\min _{\mathbf{x} \in \mathbf{R}^{3}} & f(\mathbf{x}):=x_{1}^{2}+x_{1} x_{2}+2 x_{2}^{2}-6 x_{1}-2 x_{2}-12 x_{3} \\
\text { s.t. } & g_{1}(\mathbf{x}):=2 x_{1}^{2}+x_{2}^{2} \leq 15 \\
& g_{2}(\mathbf{x}):=x_{1}-2 x_{2}-x_{3} \geq-3 \\
& x_{1}, x_{2}, x_{3} \geq 0 .
\end{array}
$$

- Using Matlab built-in fmincon
- Use SQP algorithm, quasi-Newton update, and line search
- Set solution tol, function tol, constraint tol to 1e-7
- Specify initial guess to $x_{0}=(1,1,1)$
- Make sure g_{2} is treated as linear constraint by fmincon

HOWEMOBK

- Solve w/o providing gradient of obj fcn and constraints; then re-do by providing analytic gradients
- Repeat optimization from a different x_{0}; do we find the same optimal solution found previously? Why?
${ }^{(*)}$ B. Chachuat, Nonlinear and Dynamic Optimization, EPFL

Direct Methods

- Direct methods are based on reducing the optimal control problem to a nonlinear programming problem
- The core of the reduction of the optimal control problem to a nonlinear programming problem is:
- The parameterization of all continuous variables
- The transcription of the differential equations describing the dynamics, into a finite set of equality constraints Classical transcription methods:
- Collocation
- Multiple Shooting

The original optimal control problem is solved within the accuracy of the parameterization and the transcription method used

Parameterization

- The parameterization is based on the discretization of the continuous variables on a mesh, typically settled up on the time domain
- Discretize the time domain as:

$$
t_{0}=t_{1}<t_{2}<\ldots<t_{N}=t_{f}
$$

- Discretize the states and the controls over the previous mesh by defining $\mathbf{x}_{k}=\mathbf{x}\left(t_{k}\right)$ and $\mathbf{u}_{k}=\mathbf{u}\left(t_{k}\right)$

$$
\begin{aligned}
& \mathbf{x}(t)>\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right\} \\
& \mathbf{u}(t)>\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{N}\right\}
\end{aligned}
$$

- Consequently, a new vector of variables can be defined:

$$
\mathbf{X}=\left\{t_{f}, \mathbf{x}_{1}, \mathbf{u}_{1}, \ldots, \mathbf{x}_{N}, \mathbf{u}_{N}\right\}
$$

Transcription: Collocation (1/2)

- Collocation methods are based on the transcription of the differential equations into a finite set of defects constraints using a numerical integration scheme
- Simplest case: Euler's scheme
- Solution is approximated using a linear expansion

$$
\begin{aligned}
\mathbf{x}_{i+1} & =\mathbf{x}_{i}+\dot{\mathbf{x}}\left(t_{i}\right) \cdot\left(t_{i+1}-t_{i}\right) \\
& =\mathbf{x}_{i}+\dot{\mathbf{x}}\left(t_{i}\right) \cdot h
\end{aligned}
$$

- But $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)$, then:

$$
\mathbf{x}_{i+1}=\mathbf{x}_{i}+h \cdot \mathbf{f}\left(\mathbf{x}_{i}, \mathbf{u}_{i}, t_{i}\right)
$$

- which can be written in terms of defects constraints:

$$
\boldsymbol{h}_{i}=\mathbf{x}_{i+1}-\mathbf{x}_{i}-h \cdot \mathbf{f}\left(\mathbf{x}_{i}, \mathbf{u}_{i}, t_{i}\right)=0
$$

Transcription: Collocation (2/2)

- Other numerical integration schemes can be applied
- Runge-Kutta schemes:

$$
\boldsymbol{h}_{i}=\mathbf{x}_{i+1}-\mathbf{x}_{i}-h_{i} \sum_{j=1}^{k} \beta_{j} \mathbf{f}_{i j}=0
$$

- The optimal control problem has been parameterized:
- $\mathbf{x}(t)$ and $\mathbf{u}(t) \Rightarrow \mathbf{X}=\left\{t_{f}, \mathbf{x}_{1}, \mathbf{u}_{1}, \ldots, \mathbf{x}_{N}, \mathbf{u}_{N}\right\}$
- Minimize:

$$
J=\varphi\left(\mathbf{x}_{f}, t_{f}\right)+\int_{t_{0}}^{t_{f}} L(\mathbf{x}(t), \mathbf{u}(t), t) d t \Rightarrow \quad J(\mathbf{X})
$$

- Dynamics: $\quad \dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t) \Rightarrow$ • Subject to: $\boldsymbol{h}(\mathbf{X})=0$

Nonlinear Programming Problem

Transcription: Multiple Shooting (1/2)

- Time domain in discretized:

$$
t_{0}=t_{1}<t_{2}<\ldots<t_{N}=t_{f}
$$

- Within each time interval, splines are used to model the control profile $\mathbf{u}(t)$ each time interval contains $M-1$ subintervals, where M is the number of points defining the splines
- On a generic node, the vector of variables will be:

$$
\mathbf{X}_{i}=\left\{\mathbf{x}_{i}, \mathbf{u}_{i}^{1}, \ldots, \mathbf{u}_{i}^{M-1}\right\}
$$

Transcription: Multiple Shooting (2/2)

- Within a generic time interval, the splines are used to map the discrete values $\left\{\mathbf{u}_{i}^{1}, \ldots, \mathbf{u}_{i}^{M-1}\right\}$ into continuous functions $\mathbf{u}(t)$

Numerical integration can be used to compute \mathbf{x}_{i+1}^{c}

- The dynamics is transcribed into a set of defects constraints:

$$
\boldsymbol{h}_{i}=\mathbf{x}_{i}^{c}-\mathbf{x}_{i}=0
$$

- The vector of variables for the nonlinear programming problem is:

$$
\mathbf{X}=\left\{t_{f}, \mathbf{X}_{1}, \ldots, \mathbf{X}_{N}\right\}
$$

Assignment \#5

- Solve Problem \#1 with direct transcription and collocation

$$
\begin{align*}
& \dot{x}_{1}=0.5 x_{1}+u \\
& \dot{x}_{2}=u^{2}+x_{1} u+\frac{5}{4} x_{1}^{2} \tag{2}
\end{align*}
$$

Dynamics

Obj. fcn.

$$
\begin{aligned}
& x_{1}(0)=1 \\
& x_{2}(0)=0
\end{aligned}
$$

$$
t_{i}=0
$$

$$
t_{f}=1
$$

b. c.
init., final time

- Use Euler method for direct transcription
- Provide analytic gradients and zero initial guess
- Compare numerical vs analytical solution
- Make trade-off between CPU time and solution accuracy

Low-Thrust Earth-Mars Transfer (1/2)

- Optimal control problem:
- Given the dynamics of the controlled 2 body problem:

$$
\ddot{\mathbf{r}}=-\frac{\mu}{\mathrm{r}^{3}} \cdot \mathbf{r}+\mathbf{u}
$$

- Minimize: $J=\int_{t_{0}}^{t_{f}} L(\mathbf{x}, \mathbf{u}, t) \mathrm{d} t=\frac{1}{2} \int_{t_{0}}^{t_{f}} \mathbf{u} \cdot \mathbf{u}^{T} \mathrm{~d} t$
- Subject to: $\mathbf{r}\left(t_{0}\right)=\mathbf{r}_{E}\left(t_{0}\right) \quad \mathbf{v}\left(t_{0}\right)=\mathbf{v}_{E}\left(t_{0}\right)$

$$
\mathbf{r}\left(t_{f}\right)=\mathbf{r}_{M}\left(t_{f}\right) \quad \mathbf{v}\left(t_{f}\right)=\mathbf{v}_{M}\left(t_{f}\right)
$$

- Transcription technique: Simple shooting
Note: Simple shooting is multiple shooting when $N=1$

Low-Thrust Earth-Mars Transfer (2/2)

- Cubic splines for $\mathbf{u}(t)$ built on four points $>M=4$
- Earth's ephemerides are used to set i.c. for the integration of the shooting method constraints on \mathbf{x}_{0} automatically satisfied
- Optimization variables: $t_{0}, t_{f}, \mathbf{u}^{1}, \ldots, \mathbf{u}^{4}(\operatorname{dim}(\mathbf{X})=14)$
- First guess: ballistic Lambert's arc

first guess

solution

Controlled Traj. in Relative Dynamics

- Given the equations of the relative dynamics:

$$
\left\{\begin{aligned}
\ddot{x}-2 n \dot{y}-3 n^{2} x & =0 \\
\ddot{y}+2 n \dot{x} & =0 \\
\ddot{z}+n^{2} z & =0
\end{aligned}\right.
$$

- Minimize: $J=\int_{t_{0}}^{t_{f}} L(\mathbf{x}, \mathbf{u}, t) \mathrm{d} t=\frac{1}{2} \int_{t_{0}}^{t_{f}} \mathbf{u} \cdot \mathbf{u}^{T} \mathrm{~d} t$
- Subject to: $\mathbf{r}\left(t_{0}\right)=\mathbf{r}_{0} \quad \mathbf{r}\left(t_{f}\right)=\mathbf{r}_{f}$

$$
\mathbf{v}\left(t_{0}\right)=\mathbf{v}_{0} \quad \mathbf{v}\left(t_{f}\right)=\mathbf{v}_{f}
$$

- Note: $\mathbf{r}\left(t_{0}\right), \mathbf{v}\left(t_{0}\right)=\mathbf{0}, \mathbf{r}\left(t_{f}\right), \mathbf{v}\left(t_{f}\right) \neq \mathbf{0}-$ Formation depl.

$$
\begin{aligned}
& \mathbf{r}\left(t_{0}\right), \mathbf{v}\left(t_{0}\right) \neq \mathbf{0}, \mathbf{r}\left(t_{f}\right), \mathbf{v}\left(t_{f}\right) \neq \mathbf{0}>\text { Formation reconf. } \\
& \mathbf{r}\left(t_{0}\right), \mathbf{v}\left(t_{0}\right) \neq \mathbf{0}, \mathbf{r}\left(t_{f}\right), \mathbf{v}\left(t_{f}\right)=\mathbf{0} \downarrow \text { Docking }
\end{aligned}
$$

Formation Flying Deployment

- Transcription technique: Simple shooting
- Cubic splines for $\mathbf{u}(t)$ built on six points $-M=6$
- First guess: $\mathbf{u}(t)=\mathbf{0}$

- Reference orbit:
- $a=26570 \mathrm{~km}$

Mars Aero-Gravity Assist (1/4)

Gravity assist

Aero-Gravity Assist

Mars Aero-Gravity Assist (2/4)

- Dynamics:

$$
\begin{aligned}
\dot{R} & =V \sin \gamma \\
\dot{\theta} & =\frac{V \cos \gamma \cos \psi}{R \cos \phi} \\
\dot{\phi} & =\frac{V \cos \gamma \sin \psi}{R} \\
\dot{V} & =\frac{D}{m}-G \sin \gamma \\
V \dot{\gamma} & =\frac{L \cos \sigma}{m}-G \cos \gamma+\frac{V^{2} \cos \gamma}{R} \\
V \dot{\psi} & =\frac{L \sin \sigma}{m \cos \gamma}-\frac{V^{2} \tan \phi \cos \gamma \cos \psi}{R}
\end{aligned}
$$

- Control parameters:
- Bankangle σ
- Planar maneuver
- $\lambda=C_{L} / C_{L}\left((L / D)_{\text {max }}\right)$
- Atmospheric entry conditions

Mars Aero-Gravity Assist (3/4)

- Optimal control problem

Find the optimal control law, $\lambda(t)$, the free atmospheric entry conditions and the final time t_{f} to

- Convective heating at stagnation point

$$
\dot{q}_{w_{0}}=1.35 e-8\left(\frac{\rho}{r_{n}}\right)^{1 / 2} V^{3.04}\left(1-\frac{h_{w}}{H}\right)<\dot{q}_{w_{0}}^{\max }
$$

Mars Aero-Gravity Assist (4/4)

- Transcription technique: Multiple Shooting
- $N=11, M=4>\operatorname{dim}(\mathbf{X}) \approx 100$
- Cubic splines
- First guess using simple shooting and evolutionary algorithms

GTOC II (1/3)

- Optimal control problem:
- Given the dynamics of the controlled 2 body problem:

$$
\ddot{\mathbf{r}}=-\frac{\mu}{\mathrm{r}^{3}} \cdot \mathbf{r}+\mathbf{u}
$$

Visit four given asteroids

- Maximize: $J=m_{f} /\left(t_{f}-t_{0}\right), m_{f}=m_{0} \cdot e^{-\frac{1}{I_{s p} g_{0}} \int_{t_{0}}^{t_{f}}|\mathbf{u}| d \tau}$
- Subject to:
$\left.\begin{array}{rlrl}-\mathbf{r}\left(t_{d e p, P}\right) & =\mathbf{r}_{P}\left(t_{d e p, P}\right) & \mathbf{v}\left(t_{d e p, P}\right) & =\mathbf{v}_{P}\left(t_{d e p, P}\right) \\ \mathbf{r}\left(t_{a r r}, P\right.\end{array}\right)=\mathbf{r}_{P}\left(t_{a r r, P}\right) \quad \mathbf{v}\left(t_{a r r, P}\right)=\mathbf{v}_{P}\left(t_{a r r, P}\right)$
- $\|\mathbf{u}\| \leq \mathbf{u}^{\max }$
- $t_{d e p, P_{i}}-t_{a r r, P_{i-1}} \leq 90$ days

GTOC II (2/3)

- Transcription technique: Collocation
- Optimization variables:
- Four departure epochs (Earth and three asteroids)
- Four transfer times
- Control parameters deriving from transcription
- State parameters deriving from transcription

$$
\operatorname{dim}(\mathbf{X}) \approx 1000
$$

- Identified solution:

Collocation methods can better describe discontinuities

Multiple Shooting vs Collocation

- Both Multiple Shooting and Collocation can be considered robust methods, even if highly nonlinear dynamics must be dealt with
- Advantage of Collocation w.r.t. Multiple Shooting:
- Better management of discontinuities of the control functions
- Disadvantage of Collocation w.r.t. Multiple Shooting:
- Higher number of variables

Direct Methods vs Indirect Methods

- Main Advantages of Direct Methods:
- No need of deriving the equations related to the necessary conditions for optimality
- More versatility and easier implementation in black-box tools
- Main Disadvantage of Direct Methods:
- Need of numerical techniques to effectively estimate Hessians and Jacobians
- Approximate methods
- Avoid both indirect and direct
- Suboptimal solutions

Definition of the original problem

Find

$$
\boldsymbol{u}(t), \quad t \in\left[t_{i}, t_{f}\right], \quad \boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{m}\right)
$$

minimizing

$$
J=\varphi\left(\boldsymbol{x}\left(t_{f}\right), t_{f}\right)+\int_{t_{i}}^{t_{f}} L(\boldsymbol{x}, \boldsymbol{u}, t) \mathrm{d} t
$$

with dynamics
and boundary conditions

$$
\boldsymbol{x}\left(t_{i}\right)=\boldsymbol{x}_{i} \quad \boldsymbol{\psi}\left(\boldsymbol{x}\left(t_{f}\right), \boldsymbol{u}\left(t_{f}\right), t_{f}\right)=0
$$

Note: control saturation, path constraints, variable final time, etc., not considered for simplicity

Solution of the original problem

Hamiltonian of the problem

$$
H(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{u}, t)=L(\boldsymbol{x}, \boldsymbol{u}, t)+\boldsymbol{\lambda}^{T} \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u}, t)
$$

$\boldsymbol{x}(t), \boldsymbol{\lambda}(t), \boldsymbol{u}(t), \boldsymbol{\nu} \quad$ that satisfy the necessary conditions

$$
\begin{equation*}
\dot{\boldsymbol{x}}=\frac{\partial H}{\partial \boldsymbol{\lambda}} \quad \dot{\boldsymbol{\lambda}}=-\frac{\partial H}{\partial \boldsymbol{x}} \quad \frac{\partial H}{\partial \boldsymbol{u}}=0 \tag{1}
\end{equation*}
$$

under $\quad \boldsymbol{x}\left(t_{i}\right)=\boldsymbol{x}_{i} \quad \boldsymbol{\lambda}\left(t_{f}\right)=\left[\frac{\partial \varphi}{\partial \boldsymbol{x}}+\left(\frac{\partial \boldsymbol{\psi}}{\partial \boldsymbol{x}}\right)^{T} \boldsymbol{\nu}\right]_{t=t_{f}} \quad \boldsymbol{\psi}\left(\boldsymbol{x}\left(t_{f}\right), \boldsymbol{u}\left(t_{f}\right), t_{f}\right)=0$
Iterative methods used to solve (1)

- Convergence depends on initial guess
- Guessing λ_{i} is not trivial (no physical meaning)
- Difficult to treat (algebraic-differential system)
- Deep knowledge of the problem required

Why approximate methods

- Avoid solving problem (1)
- Transform problem (1) into a simpler problem
- Ease the computation of solutions
- Deliver sub-optimal solutions
- Examples
- Direct transcription [Hargraves\&Paris 1987, Enright\&Conway, Betts 1998]
- Generating function [Park\&Scheeres, 2006]
- SDRE [Pearson 1962, Wernli\&Cook 1975, Mracek\&Cloutier 1998]
- ASRE [Cimen\&Banks 2004]
- ...

(Time Varying) LQR

Dynamics: $\quad \dot{\boldsymbol{x}}=A(t) \boldsymbol{x}+B(t) \boldsymbol{u}, \quad$ Initial condition: $\quad \boldsymbol{x}\left(t_{i}\right)=\boldsymbol{x}_{i}$
Objective function: $\quad J=\frac{1}{2} \boldsymbol{x}^{T}\left(t_{f}\right) S\left(t_{f}\right) \boldsymbol{x}\left(t_{f}\right)+\frac{1}{2} \int_{t_{i}}^{t_{f}}\left[\boldsymbol{x}^{T} Q(t) \boldsymbol{x}+\boldsymbol{u}^{T} R(t) \boldsymbol{u}\right] \mathrm{d} t$,
Necessary conditions of optimality

$$
\begin{align*}
\dot{\boldsymbol{x}} & =A(t) \boldsymbol{x}+B(t) \boldsymbol{u}, \longleftrightarrow \\
\dot{\boldsymbol{\lambda}}= & -Q(t) \boldsymbol{x}-A^{T}(t) \boldsymbol{\lambda}, \\
0= & R(t) \boldsymbol{u}+B^{T}(t) \boldsymbol{\lambda}, \quad \zeta \boldsymbol{u}=-R^{-1}(t) B^{T}(t) \boldsymbol{\lambda} \\
& \binom{\dot{\boldsymbol{x}}}{\dot{\boldsymbol{\lambda}}}=\left[\begin{array}{rl}
A(t) & -B(t) R^{-1}(t) B^{T}(t) \\
-Q(t) & -A^{T}(t)
\end{array}\right]\binom{\boldsymbol{x}}{\boldsymbol{\lambda}} \tag{2}
\end{align*}
$$

Solution of TVLQR by the STM

Exact solution of system (2):
($\boldsymbol{x}_{i}, \boldsymbol{\lambda}_{i}$ initial state, costate)

$$
\begin{align*}
\boldsymbol{x}(t) & =\phi_{x x}\left(t_{i}, t\right) \boldsymbol{x}_{i}+\phi_{x \lambda}\left(t_{i}, t\right) \boldsymbol{\lambda}_{i}, \\
\boldsymbol{\lambda}(t) & =\phi_{\boldsymbol{\lambda x}}\left(t_{i}, t\right) \boldsymbol{x}_{i}+\phi_{\lambda \lambda}\left(t_{i}, t\right) \boldsymbol{\lambda}_{i}, \tag{3}
\end{align*}
$$

$\phi_{x x}, \phi_{x \lambda}, \phi_{\lambda x}, \phi_{\lambda \lambda}$ are the components of the state transition matrix (STM)

$$
\Phi\left(t_{i}, t\right)=\left[\begin{array}{ll}
\phi_{x x}\left(t_{i}, t\right) & \phi_{x \lambda}\left(t_{i}, t\right) \\
\phi_{\lambda x}\left(t_{i}, t\right) & \phi_{\lambda \lambda}\left(t_{i}, t\right)
\end{array}\right]
$$

STM subject to $\left[\begin{array}{ll}\dot{\phi}_{x x} & \dot{\phi}_{x \lambda} \\ \dot{\phi}_{\lambda x} & \dot{\phi}_{\lambda \lambda}\end{array}\right]=\left[\begin{array}{rl}A(t) & -B(t) R^{-1}(t) B^{T}(t) \\ -Q(t) & -A^{T}(t)\end{array}\right]\left[\begin{array}{ll}\phi_{x x} & \phi_{x \lambda} \\ \phi_{\lambda x} & \phi_{\lambda \lambda}\end{array}\right]$
with $\quad \phi_{x x}\left(t_{i}, t_{i}\right)=I_{n \times n}, \phi_{x \lambda}\left(t_{i}, t_{i}\right)=0_{n \times n}, \phi_{\lambda x}\left(t_{i}, t_{i}\right)=0_{n \times n}, \phi_{\lambda \lambda}\left(t_{i}, t_{i}\right)=I_{n \times n}$

- If $\boldsymbol{\lambda}_{i}$ was known, it would be possible to compute $\boldsymbol{x}(t), \boldsymbol{\lambda}(t)$ through (3), and $\boldsymbol{u}(t)$ with $\boldsymbol{u}=-R^{-1}(t) B^{T}(t) \boldsymbol{\lambda}$
- $\boldsymbol{\lambda}_{i}$ computed by using (3) and the final condition (3 types)

Hard constrained problem (HCP)

- Final state given

$$
\dot{\boldsymbol{x}}=A(t) \boldsymbol{x}+B(t) \boldsymbol{u}, \quad \boldsymbol{x}\left(t_{i}\right)=\boldsymbol{x}_{i}
$$

$$
J=\frac{1}{2} \int_{t_{i}}^{t_{f}}\left[\boldsymbol{x}^{T} Q(t) \boldsymbol{x}+\boldsymbol{u}^{T} R(t) \boldsymbol{u}\right] \mathrm{d} t, \quad \boldsymbol{x}\left(t_{f}\right)=\boldsymbol{x}_{f}
$$

Statement of HCP

Write the first of (3) at $t=t_{f}$, and solve for $\boldsymbol{\lambda}_{i}$; i.e.,

$$
\boldsymbol{x}_{f}=\phi_{x x}\left(t_{i}, t_{f}\right) \boldsymbol{x}_{i}+\phi_{x \lambda}\left(t_{i}, t_{f}\right) \boldsymbol{\lambda}_{i},
$$

$$
\boldsymbol{\lambda}_{i}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{f}, t_{i}, t_{f}\right)=\phi_{x \lambda}^{-1}\left(t_{i}, t_{f}\right)\left[\boldsymbol{x}_{f}-\phi_{x x}\left(t_{i}, t_{f}\right) \boldsymbol{x}_{i}\right]
$$

Solving a HCP requires inverting the $n \times n$ matrix $\phi_{x \lambda}$

Soft constrained problem (SCP)

- Final state not given

$$
\begin{aligned}
& \dot{\boldsymbol{x}}=A(t) \boldsymbol{x}+B(t) \boldsymbol{u}, \quad \boldsymbol{x}\left(t_{i}\right)=\boldsymbol{x}_{i}, \quad \boldsymbol{\lambda}\left(t_{f}\right)=S\left(t_{f}\right) \boldsymbol{x}\left(t_{f}\right), \\
& J=\frac{1}{2} \boldsymbol{x}^{T}\left(t_{f}\right) S\left(t_{f}\right) \boldsymbol{x}\left(t_{f}\right)+\frac{1}{2} \int_{t_{i}}^{t_{f}}\left[\boldsymbol{x}^{T} Q(t) \boldsymbol{x}+\boldsymbol{u}^{T} R(t) \boldsymbol{u}\right] \mathrm{d} t
\end{aligned}
$$

Statement of SCP

Write (3) at $t=t_{f}$,

$$
\begin{aligned}
\boldsymbol{x}\left(t_{f}\right) & =\phi_{x x}\left(t_{i}, t_{f}\right) \boldsymbol{x}_{i}+\phi_{x \lambda}\left(t_{i}, t_{f}\right) \boldsymbol{\lambda}_{i}, \\
S\left(t_{f}\right) \boldsymbol{x}\left(t_{f}\right) & =\phi_{\lambda x}\left(t_{i}, t_{f}\right) \boldsymbol{x}_{i}+\phi_{\lambda \lambda}\left(t_{i}, t_{f}\right) \boldsymbol{\lambda}_{i}
\end{aligned}
$$

and solve for $\boldsymbol{\lambda}_{i}$; i.e.,

$$
\boldsymbol{\lambda}_{i}\left(\boldsymbol{x}_{i}, t_{i}, t_{f}\right)=\left[\phi_{\lambda \lambda}\left(t_{i}, t_{f}\right)-S\left(t_{f}\right) \phi_{x \lambda}\left(t_{i}, t_{f}\right)\right]^{-1}\left[S\left(t_{f}\right) \phi_{x x}\left(t_{i}, t_{f}\right)-\phi_{\lambda x}\left(t_{i}, t_{f}\right)\right] \boldsymbol{x}_{i}
$$

Solving a SCP requires inverting the $n \times n$ matrix $\left[\phi_{\lambda \lambda}\left(t_{i}, t_{f}\right)-S\left(t_{f}\right) \phi_{x \lambda}\left(t_{i}, t_{f}\right)\right]$

Mixed constrained problem (MCP)

- Some components of final state given (and some not)

$$
\begin{gathered}
\dot{\boldsymbol{x}}=A(t) \boldsymbol{x}+B(t) \boldsymbol{u}, \quad \boldsymbol{x}\left(t_{i}\right)=\boldsymbol{x}_{i}, \quad x_{i}\left(t_{f}\right)=x_{i, f}, \quad \lambda_{j}\left(t_{f}\right)=S\left(t_{f}\right) x_{j}\left(t_{f}\right) \\
J=\frac{1}{2} \boldsymbol{x}_{j}^{T}\left(t_{f}\right) S\left(t_{f}\right) \boldsymbol{x}_{j}\left(t_{f}\right)+\frac{1}{2} \int_{t_{i}}^{t_{f}}\left[\boldsymbol{x}^{T} Q(t) \boldsymbol{x}+\boldsymbol{u}^{T} R(t) \boldsymbol{u}\right] \mathrm{d} t
\end{gathered}
$$

Write (3) at $t=t_{f}$, write $\boldsymbol{\lambda}_{i}=\left(\lambda_{i, i}, \lambda_{i, j}\right)^{T}$, and solve for $\lambda_{i, i}$ using $x_{i, f}(\mathrm{HCP})$ and for $\lambda_{i, j}$ using $\lambda_{j}\left(t_{f}\right)=S\left(t_{f}\right) x_{j}\left(t_{f}\right)$ (SCP); i.e.,
$\lambda_{i, i}\left(x_{i, i}, x_{f, i}, t_{i}, t_{f}\right)=\phi_{x \lambda, i}^{-1}\left(t_{i}, t_{f}\right)\left[x_{f, i}-\phi_{x x, i}\left(t_{i}, t_{f}\right) x_{i, i}\right]$,
$\lambda_{i, j}\left(x_{i, j}, t_{i}, t_{f}\right)=\left[\phi_{\lambda \lambda, j}\left(t_{i}, t_{f}\right)-S\left(t_{f}\right) \phi_{x \lambda, j}\left(t_{i}, t_{f}\right)\right]^{-1}\left[S\left(t_{f}\right) \phi_{x x, j}\left(t_{i}, t_{f}\right)-\phi_{\lambda x, j}\left(t_{i}, t_{f}\right)\right] x_{i, j}$
Solving a SCP requires inverting the matrices $\phi_{x \lambda, i}$ and $\left[\phi_{\lambda \lambda, j}\left(t_{i}, t_{f}\right)-S\left(t_{f}\right) \phi_{x \lambda, j}\left(t_{i}, t_{f}\right)\right]^{-1}$

Idea of the method

Re-write the nonlinear problem as

original dynamics
$\dot{\boldsymbol{x}}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u}, t)$,

 $J=\varphi\left(\boldsymbol{x}\left(t_{f}\right), t_{f}\right)+\int_{t_{i}}^{t_{f}} L(\boldsymbol{x}, \boldsymbol{u}, t) \mathrm{d} t \quad$ original objective function
factorized objective function
$J=\frac{1}{2} \boldsymbol{x}^{T}\left(t_{f}\right) S\left(\boldsymbol{x}\left(t_{f}\right), t_{f}\right) \boldsymbol{x}\left(t_{f}\right)+\frac{1}{2} \int_{t_{i}}^{t_{f}}\left[\boldsymbol{x}^{T} Q(\boldsymbol{x}, t) \boldsymbol{x}+\boldsymbol{u}^{T} R(\boldsymbol{x}, t) \boldsymbol{u}\right] \mathrm{d} t$ Idea: to use state-dependent matrices $\quad A(\boldsymbol{x}, t), B(\boldsymbol{x}, \boldsymbol{u}, t), Q(\boldsymbol{x}, t), R(\boldsymbol{x}, t)$
such that for given arguments $\overline{\boldsymbol{x}}(t), \overline{\boldsymbol{u}}(t)$ they depend on time only; i.e.,

$$
A(\overline{\boldsymbol{x}}(t), t), B(\overline{\boldsymbol{x}}(t), \overline{\boldsymbol{u}}(t), t), Q(\overline{\boldsymbol{x}}(t), t), R(\overline{\boldsymbol{x}}(t), t) \Rightarrow A(t), B(t), Q(t), R(t)
$$

The algorithm: iterations

Iteration 0 - Find $x^{(0)}(t), \boldsymbol{u}^{(0)}(t)$ solving "Problem 0 "

$$
\left[\overline{\boldsymbol{x}}=\boldsymbol{x}_{i}, \overline{\boldsymbol{u}}=\mathbf{0}\right]
$$

$$
\dot{\boldsymbol{x}}^{(0)}=A\left(\underset{\uparrow}{A\left(\boldsymbol{x}_{i}, t\right) \boldsymbol{x}^{(0)}}+B \underset{\uparrow}{B\left(\boldsymbol{x}_{i}, \mathbf{0}, t\right) \boldsymbol{u}^{(0)},}\right.
$$

$$
J=\frac{1}{2} \boldsymbol{x}^{(0) T}\left(t_{f}\right) S\left(\boldsymbol{x}_{i}, t_{f}\right) \boldsymbol{x}^{(0)}\left(t_{f}\right)+\frac{1}{2} \int_{t_{i}}^{t_{f}}\left[\boldsymbol{x}^{(0) T} Q\left(\boldsymbol{x}_{i}, t\right) \boldsymbol{x}^{(0)}+\boldsymbol{u}^{(0) T} R\left(\boldsymbol{x}_{i}, t\right) \boldsymbol{u}^{(0)}\right] \mathrm{d} t
$$

Iteration \mathbf{i} - Find $\boldsymbol{x}^{(i)}(t), \boldsymbol{u}^{(i)}(t)$ satisfying "Problem i" $\quad\left[\overline{\boldsymbol{x}}=\boldsymbol{x}^{(i-1)}, \overline{\boldsymbol{u}}=\boldsymbol{u}^{(i-1)}\right]$

$$
\left.\left.\dot{\boldsymbol{x}}^{(i)}=A \underset{\uparrow}{A\left(\boldsymbol{x}^{(i-1)}\right.}(t), t\right) \boldsymbol{x}^{(i)}+B \underset{\uparrow}{\boldsymbol{x}^{(i-1)}}(t), \underset{\uparrow}{\boldsymbol{u}^{(i-1)}}(t), t\right) \boldsymbol{u}^{(i)},
$$

The algorithm: convergence

Problem i = TVLQR

- Each problem corresponds to a time-varying linear quadratic regulator (TVLQR)
- The method requires solving a series of TVLQR
- Iterations terminate when, for given

$$
\left\|\boldsymbol{x}^{(i)}-\boldsymbol{x}^{(i-1)}\right\|_{\infty}=\max _{t \in\left[t_{i}, t_{f}\right]}\left\{\left|x_{j}^{(i)}(t)-x_{j}^{(i-1)}(t)\right|, j=1, \ldots, n\right\} \leq \varepsilon
$$

the difference between each component of the state, evaluated for all times, changes by less than ε between two successive iterations

Numerical examples

- Low-thrust dynamics in central vector field
- Low-thrust rendez-vous
- Low-thrust orbital transfer
- Low-thrust stationkeeping of GEO satellites

Rendez-vous: statement and factorization

Dynamics

$$
\begin{aligned}
\dot{x}_{1} & =x_{3} \\
\dot{x}_{2} & =x_{4}, \\
\dot{x}_{3} & =2 x_{4}-\left(1+x_{1}\right)\left(1 / r^{3}-1\right)+u_{1}, \\
\dot{x}_{4}= & -2 x_{3}-x_{2}\left(1 / r^{3}-1\right)+u_{2}, \\
\text { with } & r=\sqrt{\left(x_{1}+1\right)^{2}+x_{2}^{2}} \\
\quad & \text { State } \quad \text { Control }
\end{aligned}
$$

- Rotating frame
x_{1} radial displacement
x_{2} transversal displacement
- Normalized units
- length unit = orbit radius
- time unit $=1 / \omega$

Initial condition

$$
\boldsymbol{x}_{i}=(0.2,0.2,0.1,0.1)
$$

Factorization (dynamics)

$$
\left(\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right)=\underbrace{\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
f\left(x_{1}, x_{2}\right)\left(1+1 / x_{1}\right) & 0 & 0 & 2 \\
0 & f\left(x_{1}, x_{2}\right) & -2 & 0
\end{array}\right]}_{A(\boldsymbol{x})}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)+\underbrace{\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]}_{B}\binom{u_{1}}{u_{2}}
$$

$$
\text { with } f\left(x_{1}, x_{2}\right)=-1 /\left[\left(x_{1}+1\right)^{2}+x_{2}^{2}\right]^{3 / 2}+1
$$

Rendez-vous: HCP and SCP definition

HCP

$$
J=\frac{1}{2} \int_{t_{i}}^{t_{f}} \boldsymbol{u}^{T} \boldsymbol{u} \mathrm{~d} t
$$

$$
\boldsymbol{x}_{f}=(0,0,0,0), t_{i}=0, t_{f}=1
$$

$$
S=\operatorname{diag}(25,15,10,10), t_{i}=0, t_{f}=1
$$

$$
\boldsymbol{x}\left(t_{f}\right) \text { free }
$$

Factorization (objective function)
$J=\frac{1}{2} \boldsymbol{x}^{T}\left(t_{f}\right) S\left(t_{f}\right) \boldsymbol{x}\left(t_{f}\right)+\frac{1}{2} \int_{t_{i}}^{t_{f}}\left[\boldsymbol{x}^{T} Q(t) \boldsymbol{x}+\boldsymbol{u}^{T} R(t) \boldsymbol{u}\right] \mathrm{d} t$
(S not defined in HCP)

- Termination tolerance $\varepsilon=10^{-9}$
(valid for all examples show)

Rendez-vous: results (HCP)

Rendez-vous: results (SCP)

Orbital transfer: statement

Dynamics

$$
\begin{aligned}
\dot{x}_{1} & =x_{3}, \\
\dot{x}_{2} & =x_{4}, \\
\dot{x}_{3} & =x_{1} x_{4}^{2}-1 / x_{1}^{2}+u_{1}, \\
\dot{x}_{4} & =-2 x_{3} x_{4} / x_{1}+u_{2} / x_{1} .
\end{aligned}
$$

State
Control

$$
\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \quad \boldsymbol{u}=\left(u_{1}, u_{2}\right)
$$

Objective function

- Rotating frame (polar coordinates)
x_{1} radial distance
x_{2} angular phase
- Normalized units
- length unit = initial orbit radius
- time unit $=1 / \omega$ (initial orbit)

$$
J=\frac{1}{2} \int_{t_{i}}^{t_{f}} \boldsymbol{u}^{T} \boldsymbol{u} \mathrm{~d} t
$$

$$
t_{i}=0 \quad t_{f}=\pi
$$

$$
\boldsymbol{x}_{i}=(1,0,0,1)
$$

Final conditions

$$
\begin{array}{ll}
\text { Problem A } & \boldsymbol{x}_{f}=(1.52, \pi, 0, \sqrt{1 / 1.52}) \\
\text { Problem B } & \boldsymbol{x}_{f}=(1.52, \underline{1.5 \pi, 0, \sqrt{1 / 1.52})}
\end{array}
$$

Orbital transfer: results

Factorization

Results

Q سəpqodd

Stationkeeping: statement

$$
\begin{array}{llr}
\dot{x}_{1}=x_{4}, & \text { Dynamics } & \text { State } \\
\dot{x}_{2}=x_{5}, & \boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
\dot{x}_{3}=x_{6}, & \text { Control } \\
\dot{x}_{4}=-\frac{1}{x_{1}^{2}}+x_{1} x_{6}^{2}+x_{1}\left(x_{5}+1\right) \cos ^{2} x_{3}+a_{1}\left(x_{1}, x_{2}, x_{3}\right)+u_{1}, & \boldsymbol{u}=\left(u_{1}, u_{2}, u_{3}\right) \\
\dot{x}_{5}=2 x_{6}\left(x_{5}+1\right) \tan x_{3}-2 \frac{x_{4}}{x_{1}}\left(x_{5}+1\right)+\frac{a_{2}\left(x_{1}, x_{2}, x_{3}\right)}{x_{1} \cos x_{3}}+\frac{u_{2}}{x_{1} \cos x_{3}}, & \\
\dot{x}_{6}=-2 \frac{x_{4}}{x_{1}} x_{6}-\left(x_{5}+1\right)^{2} \sin x_{3} \cos x_{3}+\frac{a_{3}\left(x_{1}, x_{2}, x_{3}\right)}{x_{1}}+\frac{u_{3}}{x_{1}}, & &
\end{array}
$$

Initial condition

$$
\boldsymbol{x}_{i}=(1,0.05 \times 180 / \pi, 0.05 \times 180 / \pi, 0,0,0) \quad t_{i}=0
$$

Final condition

$$
x_{f, 1}=1 \quad x_{f, j} \text { free } \quad j=2, \ldots, 6 \quad t_{f}=\pi
$$

Objective function

$$
\begin{aligned}
& Q=\operatorname{diag}(0,1,1,1,1,1) \\
& R=\operatorname{diag}(1,1,1) \\
& S=100 \operatorname{diag}(1,1,1,1,1)
\end{aligned}
$$

- Rotating frame (spherical coordinates)
x_{1} radial distance
x_{2} longitude deviation
x_{3} latitude
- Normalized units
- length unit = GEO radius
- time unit $=1 / \omega$ (initial orbit)
- Reference longitude $=60 \mathrm{E}$
- Perturbations a_{1}, a_{2}, a_{3}

Stationkeeping: factorization

Factorization

$$
A(\boldsymbol{x})=\left[\begin{array}{cccccc}
& 0_{33} & & & I_{33} & \\
& & & & & \\
a_{41} & 0 & 0 & 0 & a_{45} & a_{46} \\
0 & 0 & 0 & a_{54} & a_{55} & a_{56} \\
a_{61} & 0 & 0 & a_{64} & a_{65} & a_{66}
\end{array}\right], \quad B(\boldsymbol{x})=\left[\begin{array}{ccc}
& 0_{33} & \\
& & 0 \\
1 & 0 & 0 \\
0 & \frac{1}{r^{2} \cos ^{2} \varphi} & 0 \\
0 & 0 & \frac{1}{r^{2}}
\end{array}\right]
$$

with
$a_{41}=-\frac{1}{x_{1}^{3}}+\alpha_{1} x_{6}^{2}+\left(\alpha_{2} x_{5}^{2}+2 \alpha_{3} x_{5}+1\right) \cos ^{2} x_{3}, \quad a_{56}=\left[2+2\left(1-\beta_{1}\right) x_{5}\right] \tan x_{3}$,
$a_{45}=\left[\left(1-\alpha_{2}\right) x_{1} x_{5}+2\left(1-\alpha_{3}\right)\right] \cos ^{2} x_{3}, \quad a_{61}=-\frac{1}{2 x_{1}} \sin 2 x_{3}$,
$a_{46}=\left(1-\alpha_{1}\right) x_{1} x_{6}$,
$a_{54}=-\frac{2}{x_{1}}-2\left(1-\beta_{2}\right) \frac{1}{x_{1}} x_{5}$,
$a_{64}=-2\left(1-\gamma_{1}\right) \frac{1}{x_{1}} x_{6}$,
$a_{55}=2 \beta_{1} x_{5} \tan x_{3}-2 \beta_{2} \frac{x_{4}}{x_{1}}$,
$a_{65}=\left[-\frac{1}{2} x_{5}-1\right] \sin 2 x_{3}$,

- $\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \gamma_{\text {free }}$ parameters
[Topputo\&Bernelli-Zazzera 2011]
- Can vary in $[0,1]$

Stationkeeping: results

- Control cycle
- Free drift (2.5 days)
- Maneuver (0.5 day)

- 1 year stationkeeping simulated in [Topputo\&Bernelli-Zazzera 2011]

Final Remarks

- All the previous numerical techniques for optimization are eventually based on the use of the Newton method:
- Direct methods $>$ Solution of the nonlinear system of equations related to the necessary conditions for optimality
- Indirect methods $>$ Solution of the boundary value problem on the DAE system
- Approx methods $>$ Solution of TVLQR, no need of first guess solution, but suboptimal
They suffer of the same disadvantages:
- Local convergence, i.e., they tend to converge to solutions close to the supplied first guesses
- Need of "good" first guesses for the solution
\Rightarrow Note: global optimization is another matter!

Selected references

- Direct Methods:
- Enright, P.J., and Conway, B.A., Discrete Approximation to Optimal Trajectories Using Direct Transcription and Nonlinear Programming, J. of Guid., Contr., and Dyn., 15, 994-1001, 1992
- Betts, J.T., Survey of Numerical Methods for Trajectory Optimization, J. of Guid., Contr., and Dyn., 21, 193-207, 1998
- Betts, J. T., Practical Methods for Optimal Control Using Nonlinear Programming, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2001
- Conway, B.A., Space Trajectory Optimization, Cambridge University Press, 2010
- Indirect Methods:
- L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, John Wiley \& Sons, New York, NY, USA, 1962
- Bryson, A.E., Ho, Y.C., Applied Optimal Control, Hemisphere Publishing Co., Washigton, 1975
- ASRE Method:
- Cimen, T. and Banks, S.P., Global optimal feedback control for general nonlinear systems with nonquadratic performance criteria, Systems and Control Letters, vol. 53, no. 5, pp. 327-346, 2004.

