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The Company

§ Founded by 5 partners in January 2008 
§ All partners have a PhD in Aerospace Engineering 
§ Dinamica Srl has a strong connection with Academia 
§ More than 30 years of accumulated space experience 
§ Dinamica Srl is located in Milano

4

INNOVATING TECHNOLOGY



Keywords

System engineering

Optimization Autonomy

Mission analysis

Optimization

Control

Simulation

Design

Analysis

�3



INNOVATING TECHNOLOGY

The mission

Space field Industrial sectorTechnology transfer

§ Italian SME, founded in 2008 
§ The mission: “... to carry on developing methods and 

advanced solutions within the Space field and to 
transfer their use in other industrial sectors ...”
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A Tangible Example

INNOVATING TECHNOLOGY

Pharmaceutical industry

Used to reconstruct  
unmodeled structural 
dynamics

Considerable savings (10-20%) compared to standard methods

Predictive 
control

System 
identification

Used to reduce 
vibrations in large 
telescope satellites

Used to reconstruct a 
pharmaceutical process 

dynamics

Used to minimize the 
energy supply
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Optimal Control Problem (1/2)

‣ Consider the following dynamical system:!

!

where:                                 is the state vector and 
 

                                            is the control vector

‣ Determine the       control functions such that the following 
performance index is minimized:

m

where the initial and final state vectors,       and       , as well as 
the final time      , are not necessarily fixed



Optimal Control Problem (2/2)

‣ In addition to the previous statements suppose that the 
following constraints are imposed!

• Boundary conditions at final time     : !

                               , where   !

• Path constraints on the control variables:!

                                 , where

tf

‣ Two classical solution methods:!
• Indirect methods: based on reducing the optimal control 

problem to a Boundary Value Problem (BVP) !

• Direct methods: based on reducing the optimal control 
problem to a nonlinear programming problem       



• and the inequality 
constraints                       :

Example: Low-Thrust Earth-Mars Transfer

• Given the dynamics of the controlled 2 body problem:

• Minimize:

r̈ = � µ

r3
· r + u

• Subject to equality constraints:

v
E

r
E

v
1

r
M

v
M

v
2

r(t0) = rE(t0)
r(tf ) = rM (tf ) v(tf ) = vM (tf )

v(t0) = vE(t0)

⇥u⇥ � umax



Indirect Methods (1/6)
‣ Reconsider the optimal control problem: 

 

Given the dynamical system!
!

• Minimize:!

• Subject to:                               and

‣ Constraints are added to the performance index     by 
introducing two kinds of Lagrange multipliers:!
• a    -dimensional vector of constants      for the final constraints!

• two    - and a    -dimensional vectors of functions     and     
(adjoint or costate variables) for dynamics and path constraints

J

p

n q



Indirect Methods (2/6)
‣ Augmented performance index:

The dynamics is included in the augmented performance 
index as a constraint

‣ Moreover, pertaining the costate variables for the path 
inequality constraints     , the generic component       must 
satisfy the following relations:

µk



‣ The problem is then reduced to identify a stationary point of    .  
This is achieved by imposing the gradient to be zero. The 
optimization variables are:!
• State vector      and control vector!
• Lagrange multipliers and costate variables     ,     and!
• Unknown components of the initial state       ,!
• Final state and time        and   

Indirect Methods (3/6)

‣ Integrating by parts the term           yields:

where                       and   



Indirect Methods (4/6)

Constraints

Dynamics



Indirect Methods (5/6)

‣ The problem consists on finding the functions          ,  
and          by solving the differential-algebraic system: 

Euler-Lagrange 
equations

differential

algebraic

Note: For the sake of a more compact notation, define the Hamiltonian

The previous equations read:



Indirect Methods (6/6)
‣ The previous differential-algebraic system must be coupled to 

the         boundary conditions2 n

given or

and to the                     additional constraintsp + q + 1

The optimal control problem is reduced to a boundary value 
problem on a differential-algebraic system of equations (DAE)



Assignment #1

§ Given the simple optimal control problem (Problem #1) 
!
!
!
!
!

§ Write the necessary conditions for optimality and show that 
the optimal solution is

3 Example 1: A Simple Optimal Control Problem

In this section, a simple optimal control problem is solved with Hermite–Simpson method, and certain
issues are set to speed-up the computation time and improving accuracy. Consider the problem of finding
u(t) with fixed initial and final time [0, 1] to minimize the cost

J = x2(1) (68)

subject to system equations

ẋ1 = 0.5x1 + u

ẋ2 = u2 + x1u+
5

4
x2
1

(69)

and to the boundary conditions

x1(0) = 1

x2(0) = 0
(70)

with the following bound box of state and control variables

−10 ≤ x1(t) ≤ 10 (71)

−10 ≤ x2(t) ≤ 10 (72)

−10 ≤ u(t) ≤ 10 (73)

(74)

The analytical solution of this problem is

x1(t) =
cosh(1− t)

cosh(1)

u(t) =
−(tanh(1− t) + 0.5) cosh(1− t)

cosh(1)

(75)

3.1 Solution by Hermite–Simpson method

This problem is solved by using the MATLAB function fmincon with ‘interior-point’ algorithm. The
final optimized results are plotted in Figure 11, where the discrete values of x1, u as well as the analytical
continue time history of x1a, ua are plotted. In Figure 11(c) it can be seen that the error of x1 is much
lower than that of u (10−10 for x1 vs 10−5 for u). This is because the 3rd-order Hermite interpolation
polynomial is implemented to approximate the states, while linear interpolation is used to mimic the
control curve. In Figure 11(d), we integrate dynamics from the initial condition with the optimal control
history, and then we plot the error of x1. It can be seen that the error of x1 in the whole time domain
[0, 1] is below 10−5.

3.2 Improving solution accuracy and computational efficiency

Fmincon uses the ‘finite differences’ method as the default option to obtain the gradient information,
however computational efficiency can be remarkably improved by adding analytical Jacobian and Hessian.
The comparison of 3 different cases is listed in Table 3.

Table 3: Improvement with Jacobian and Hessian, 100 points.
Case Method No. of iterations CPU time
1 finite differences (default) 116 17.2 s
2 Jacobian only 116 8.7 s
3 Jacobian and Hessian 12 0.38 s

All of the three cases listed above use the same 100 discrete points. In case 1, the default ‘finite-
differences’ method is implemented to afford the gradient information, the simulation takes 116 steps and
is 17.2 s long. In case 2, adding Jacobian only does not reduce the number of iterations but saves almost
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Low-Thrust Transfer to Halo Orbit (1/4)
‣ Transfer the s/c from a given orbit (GTO raising) to a Halo orbit 

around L1 of the Earth-Moon system

‣ Dynamics:



Low-Thrust Transfer to Halo Orbit (2/4)

‣ In canonical form, the dynamics reads:

‣ Performance index: minimize the quadratic functional

‣ Constraints: fixed       and      , fixed final time

‣ Euler-Lagrange equations:



Low-Thrust Transfer to Halo Orbit (3/4)

‣ Processing the last algebraic equation leads to:

which can be inserted in the differential equations

The DAE system is reduced to a ODE system

‣ All constraints simply reduce to:

The original problem is reduced to a “simple” Two Point 
Boundary Value Problem (TPBVP)



Low-Thrust Transfer to Halo Orbit (4/4)

‣ Solution of the TPBVP:!
• Transcribe the dynamics!

• Couple the transcribed dynamics with the constraints on        and!

• Solve the resulting system with a Newton method starting from a 
suitable initial condition!

• Evaluate the control parameters

(x,�)

(u0 , ... ,uN )



End-to-end optimization w/ finite thrust

‣ GTO-to-halo fully optimized!
• very difficult problem!

• tens of spirals!

• thrust saturation

For fixed !, the Jacobi integral reads

J!x; y; z; _x; _y; _z" # 2!3!x; y; z" $ ! _x2 % _y2 % _z2" (5)

and, for a given energy C, it defines a five-dimensional manifold:

J !C" # f!x; y; z; _x; _y; _z" 2 R6jJ!x; y; z; _x; _y; _z" $ C# 0g (6)

The projection ofJ !C" onto the configuration space !x; y; z" defines
the Hill’s surfaces bounding the allowed and forbidden regions of
motion associated to C.

The vector field defined by Eqs. (2) has five well-known
equilibrium points: the Euler–Lagrange points, labeled Lk,
k# 1; . . . ; 5. This study deals with the portion of the phase space
surrounding the two collinear points L1 and L2. In a linear analysis,
these two points behave like the product saddle & center & center.
Thus, in their neighborhood, there exist families of periodic orbits
together with two-dimensional stable and unstable manifolds
emanating from them [4,24,25]. The generic periodic orbit about Li,
i# 1; 2, is referred to as "i, whereas its stable and unstablemanifolds
are labeledWs

"i andW
u
"i , respectively.

Equations (2) are used in this paper alternatively to describe the
motion in the SE or EM system. The mass parameters used for these
models are !SE # 3:0359 & 10$6 and !EM # 1:21506683 & 10$2,
respectively [47].

The planar circular restricted three-body problem (PCRTBP) is a
version of the RTBP in which the motion of P3 is constrained on the
plane z# 0. The dynamics of the PCRTBP are represented by the
first two equations in Eqs. (2) [with z# 0 in Eqs. (3) and (4)]. In this
problem, the Jacobi integral is a four-dimensional manifold, and its
projection on the configuration space !x; y" defines the Hill’s curves.
The linear behavior ofL1,L2 is saddle & center; therefore, the planar
Lyapunov orbits possess stable and unstable two-dimensional
manifolds that act as separatrices for the states of motion [28].

III. Low-Thrust Propulsion and Attainable Sets
To model the controlled motion of P3 under the gravitational

attractions of P1, P2, and the low-thrust propulsion, the following
differential equations are considered:

"x $ 2_y# @!3

@x
% Tx
m
; "y% 2_x# @!3

@y
% Ty
m

"z# @!3

@z
% Tz
m
; _m#$ T

Ispg0
(7)

where T #
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
T2
x % T2

y % T2
z

q
is the present thrust magnitude.

Continuous variations of the spacecraft mass m are taken into
account through the last of Eqs. (7). This causes a singularity arising
when m! 0 beside the well-known singularities given by impacts
of P3 with P1 or P2 (r1;2 ! 0). The guidance law T!t"#
!Tx!t"; Ty!t"; Tz!t"", t 2 't0; tf(, in Eqs. (7) is not given; rather, it is
found through an optimal control step where objective function and
boundary conditions are specified (see Sec. IV). However, in order to
construct a first-guess solution, the profile of T over time is
prescribed at this stage. Using tangential thrust, attainable sets can be
defined in the same fashion as reachable sets defined in [33].

Let #T!$"!x0; t0; t" be the flow of system (7) at time t under the
guidance law T!$", $ 2 't0; t(, and starting from !x0; t0" with
x0 # !x0; y0; z0; _x0; _y0; _z0; m0". The generic point of a tangential
low-thrust trajectory is

x !t" # # #T!x0; t0; t" (8)

where #T# #Tv=v, v# ! _x; _y; _z", v#
!!!!!!!!!!!!!!!!!!!!!!!!!!
_x2 % _y2 % _z2

p
, and #T is a

given, constant thrust magnitude. With given #T, tangential thrust
maximizes the variation of Jacobi energy, which is the only property
that has to be considered when designing trajectories in a three-body
framework. (The thrust tangential to the inertial velocitymaximizes a
variation of the orbit’s semimajor axis; in [16], a comparison between

tangential thrust in either a rotating or inertial frame shows negligible
differences in the final optimal solution.)

Let S!’" be a surface of section perpendicular to the !x; y" plane
and forming an angle ’ with the x axis. The low-thrust orbit, for a
chosen angle ’, is

" #T!x0; ’; $" # f# #T!x0; t0; $"j$ ) tg (9)

where the dependence on the initial state x0 is kept. In Eq. (9), $ is the
duration of the low-thrust law, whereas t is the time at which the orbit
intersects S!’". The orbit " #T is entirely thrust when $ # t; a thrust arc
followed by a coast arc can be achieved by setting $ < t.

The attainable set is a collection of low-thrust orbits (all computed
with the same guidance law T!$") on S!’":

A #T!’; $" #
[

x02X
" #T!x0; ’; $" (10)

According to the definition in Eq. (10), the attainable set is made up
by orbits that reach S!’" at different times, although all orbits have
the same thrust history, and therefore the same mass. (This definition
improves that given in [18,35].)

The attainable set in Eq. (10) is associated to a generic domain of
admissible initial conditions X ; it will be shown how X can be
defined for the two case studies. Attainable sets can be used to incor-
porate low-thrust propulsion in a three-body frame with the same
methodology developed for the invariant manifolds. More spe-
cifically, invariant manifolds are replaced by attainable sets, which
are manipulated to find transfer points on a surface of section.

IV. From Attainable Sets to Optimal Trajectories
A. Controlled Spatial Bicircular Restricted Four-Body Problem

First-guess solutions achieved by using attainable sets are
optimized in a four-body framework under the perspective of optimal
control. The model used to take into account the low-thrust
propulsion and the gravitational attractions of the sun, the Earth, and
the moon is

"x $ 2_y# @!4

@x
% Tx
m
; "y% 2_x# @!4

@y
% Ty
m

"z# @!4

@z
% Tz
m
; _%# !S; _m#$ T

Ispg0
(11)

This is the controlled version of the spatial bicircular restricted four-
body problem (SBRFBP) [12,48] and, in principle, it incorporates
the perturbation of the sun into the EM model. The four-body
potential !4 reads

!4!x; y; z" #!3!x; y; z;!EM" %
ms

rs
$ms

&2
!x cos %% y sin %"

(12)

The physical constants introduced to describe the sun perturb-
ation have to be in agreement with those of the EMmodel. Thus, the
distance between the sun and the EM barycenter is &#
3:88811143 & 102, the mass of the sun is ms # 3:28900541 & 105,
and its angular velocity with respect to the EM rotating frame is
!S #$9:25195985 & 10$1. The sun is located at !& cos %;
& sin %; 0"; therefore, the sun–spacecraft distance is

r2s # !x $ & cos %"2 % !y $ & sin %"2 % z2 (13)

It is worth noting that this model is not coherent because all three
primaries are assumed to move in circular orbits. Nevertheless, the
SBRFBP catches basic insights of the real four-body dynamics as the
eccentricities of the Earth’s andmoon’s orbits are 0.0167 and 0.0549,
respectively, and the moon’s orbit is inclined on the ecliptic by just
5 deg.

The controlled planar bicircular restricted four-body problem
(PBRFBP) is achieved by setting z# 0 in Eqs. (11–13). This model
is used in the remainder of the paper to design EM LELT transfers.

1646 MINGOTTI, TOPPUTO, AND BERNELLI-ZAZZERA

B. Optimal Control Problem Definition

The optimal control aims at finding the guidance law T!!",
! 2 #t0; tf$, that minimizes

J%
Z
tf

t0

T!!"
Ispg0

d! (14)

It is easy to verify through the last of Eqs. (11) that J is the propellant
mass; that is, J%m0 & mf, wherem0 andmf are the initial and final
spacecraft masses. The thrust magnitude must not exceed a
maximum threshold given by technological constraints. This is
imposed along the whole transfer through

T!t" ' Tmax (15)

where Tmax is the maximum available thrust. In addition, the
following path constraints are imposed to avoid impacts with the
Earth and moon along the transfer:
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!x( ""2 ( y2 ( z2

p
> RE;

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!x( " & 1"2 ( y2 ( z2

p
> RM
(16)

where RE and RM are the normalized mean radii of the Earth and
moon, respectively. The initial boundary condition is

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!x0 ( ""2 ( y20

q
% rE;

!!!!!!!!!!!!!!!!
_x20 ( _y20

q
% vE & rE

!x0 ( ""! _x0 & y0" ( y0! _y0 ( x0 ( "" % 0; z0 % _z0 % 0 (17)

which enforces the spacecraft at the periapsis of a planar Earth-
parking orbit uniquely specified by periapsis altitude and
eccentricity, hEp and eE, respectively (rE % RE ( hEp is the periapsis
radius; vE %

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!1 & ""!1( eE"=rE

p
is the periapsis velocity).

C. Solution by Direct Transcription and Multiple Shooting
The optimal control problem is transcribed into a nonlinear

programming problem by means of a direct approach [49]. This
method generally shows robustness and versatility, and it does not
require explicit derivation of the necessary conditions of optimality;
it is also less sensitive to variations of the first-guess solutions [50].
More specifically, a multiple shooting scheme is implemented [51].
With this strategy, Eqs. (11) are forward integrated within N & 1
intervals in which #t0; tf $ is split. This is done assumingN points and
constructing the mesh t0 % t1 < . . .< tN % tf . The solution is
discretized over theseN grid nodes; that is, xj % x!tj". Thematching
of position, velocity, sun phase, andmass is imposed at the endpoints
of the intervals in the form of defects as

! j % !xj & xj(1 % 0; j% 1; . . . ; N & 1 (18)

with !xj % #T!!"!xj; tj; tj(1", ! 2 #tj; tj(1$. To compute T!!", a
second-level time discretization is implemented by splitting each of
the N & 1 intervals into M & 1 subsegments. The control is
discretized over the M subnodes; that is, Tj;k, j% 1; . . . ; N,
k% 1; . . . ;M. A third-order spline interpolation is achieved by
selectingM% 4. Initial and final times t1 and tN are included into the
nonlinear programming variables, allowing the formulation of
variable-time transfers. The transcribed nonlinear programming
problem finds the states and the controls at mesh points (xj and Tj;k)
that satisfy integration defects, and boundary and path constraints
[Eqs. (15–17)], and that minimize the performance index [Eq. (14)].
(The final boundary condition is specified in Secs. V and VI for the
two case studies.) It is worth stressing that, not only the initial low-
thrust portion, but rather the whole transfer trajectory, is discretized
and optimized, allowing the low thrust to also act in regions
preliminarily made up by coast arcs. The optimal solution found is
assessed a posteriori by forward integrating the optimal initial
condition using an eighth-order Runge–Kutta–Fehlberg scheme
(tolerance set to 10&12) by cubic interpolation of the discrete optimal
control solution.

V. Case Study 1: Planar Low-Energy Low-Thrust
Transfers to the Moon

A. Impulsive Low-Energy Transfers to the Moon

In literature, planar low-energy transfers to the moon are designed
by decoupling the four-body problem into two PCRTBPs: the SE and
EM models. Two different portions of the transfer trajectory are
designed apart in each of these two models by exploiting the
knowledge of the phase space about the collinear Lagrange points.
The two legs are then patched together in order to define the whole
trajectory. This procedure is referred to as the coupled RTBPs
approximation. It is briefly recalled. (See [8–11,15,16,27,33,34,46]
for more details.)

In the planar SE model, the Jacobi energyCSE is chosen such that
CSE ≲ C2, where C2 is the energy of L2. (The Earth-escape leg is
constructed considering the dynamics about L2; using L1 instead is
straightforward.) The planar periodic orbit $2 and its stable manifold
Ws
$2!SE" for given CSE are computed. The solution space is studied

with the aid of the Poincaré section. As these cuts represent two-
dimensional maps for the flow of the PCRTBP, it is possible to assess
whether an orbit lies on the stable manifold or not. Orbits lying on
Ws
$2!SE" asymptotically approach $2 in forward time and orbits

inside Ws
$2 !SE" are transit orbits (that pass from the Earth region to

the exterior region), whereas orbits outside Ws
$2!SE" are nontransit

orbits [24,25,28]. Candidate trajectories to construct the Earth-
escape portion are those nontransit orbits close to bothWs

$2!SE" and
Wu
$2!SE". The set ESE is the set of Earth-escape orbits that intersect

the departure orbit (Fig. 1b).
Analogously, the Jacobi energy CEM, CEM ≲ C2, is chosen in the

planar EM model. For an exterior moon capture to occur, the
dynamics about L2 is considered. The periodic orbit $2 associated to
CEM and its stable manifoldWs

$2!EM" are computed. Using again the
separatrix property, typical of the PCRTBP, the set leading to moon
capture KEM is defined as the set of orbits inside Ws

$2!EM". It is
possible to represent this set on the same surface of section used for
the SE model (Fig. 1b). Low-energy transfers to the moon are then
defined as those orbits originated by ESE \KEM. These two sets are
characterized by different values of the Jacobi constant, CSE and
CEM, respectively; therefore, an intermediate impulsive maneuver is
needed to remove the discontinuity in velocity. In addition, two other
impulsive maneuvers are needed at both ends of the trajectory: the
first one is needed to leave the parking orbit and to place the
spacecraft into a translunar trajectory, and the second is instead used
to place the spacecraft into a stable, final orbit about the moon.

The intersection ESE \KEM defines the transfer point. The whole
trajectory design is reduced to the definition of this point, indicating
the conciseness of the method. The mechanism is summarized in
Fig. 1. The use of impulsivemaneuvers is evident and intrinsic in this
methodology. Figure 2 reports a sample solution as derived with the
RTBPs approximation. The performances of two sample solutions
are reported in Table 1 for the purpose of comparison (optimizing
these transfers is out of the scope of the present work).§ The rocket
equation (1) is evaluated with Isp % 300 s. Although it is
demonstrated that these solutions outperform the patched-conics
trajectories in terms of propellant mass [2,3], their costs could be
further reduced with LELT transfers.

B. Attainable Sets for Transfers to the Moon

LELT transfers to the moon are defined as follows. The spacecraft
is assumed to initially be on a planar Earth-parking orbit, as defined
by Eq. (17). An impulsive maneuver, carried out by the launch
vehicle, places the spacecraft on a translunar trajectory; from this
point on, the spacecraft can only rely on its low-thrust propulsion to
reach the final orbit around the moon. This orbit has moderate
eccentricity eM and periapsis altitude hMp prescribed by the mission
requirements. The transfer terminates when the spacecraft is at the

§The next NASA’s Gravity Recovery and Interior Laboratory (GRAIL)
missionwill use a 3.5month low-energy transfer similar to that represented in
Fig. 2; see http://moon.mit.edu/design.html [retrieved 29 August 2011].
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Assignment #2

§ Given Problem #1 
!
!
!
!!!!!!!

§ Solve the TPBVP associated 
§ Matlab built-in bvp4c, bvp5c 
§ Sixth-order method bvp_h6 

 available at http://www.astrodynamics.eu/Astrodynamics.eu/Software.html

3 Example 1: A Simple Optimal Control Problem

In this section, a simple optimal control problem is solved with Hermite–Simpson method, and certain
issues are set to speed-up the computation time and improving accuracy. Consider the problem of finding
u(t) with fixed initial and final time [0, 1] to minimize the cost

J = x2(1) (68)

subject to system equations

ẋ1 = 0.5x1 + u

ẋ2 = u2 + x1u+
5

4
x2
1

(69)

and to the boundary conditions

x1(0) = 1

x2(0) = 0
(70)

with the following bound box of state and control variables

−10 ≤ x1(t) ≤ 10 (71)

−10 ≤ x2(t) ≤ 10 (72)

−10 ≤ u(t) ≤ 10 (73)

(74)

The analytical solution of this problem is

x1(t) =
cosh(1− t)

cosh(1)

u(t) =
−(tanh(1− t) + 0.5) cosh(1− t)

cosh(1)

(75)

3.1 Solution by Hermite–Simpson method

This problem is solved by using the MATLAB function fmincon with ‘interior-point’ algorithm. The
final optimized results are plotted in Figure 11, where the discrete values of x1, u as well as the analytical
continue time history of x1a, ua are plotted. In Figure 11(c) it can be seen that the error of x1 is much
lower than that of u (10−10 for x1 vs 10−5 for u). This is because the 3rd-order Hermite interpolation
polynomial is implemented to approximate the states, while linear interpolation is used to mimic the
control curve. In Figure 11(d), we integrate dynamics from the initial condition with the optimal control
history, and then we plot the error of x1. It can be seen that the error of x1 in the whole time domain
[0, 1] is below 10−5.

3.2 Improving solution accuracy and computational efficiency

Fmincon uses the ‘finite differences’ method as the default option to obtain the gradient information,
however computational efficiency can be remarkably improved by adding analytical Jacobian and Hessian.
The comparison of 3 different cases is listed in Table 3.

Table 3: Improvement with Jacobian and Hessian, 100 points.
Case Method No. of iterations CPU time
1 finite differences (default) 116 17.2 s
2 Jacobian only 116 8.7 s
3 Jacobian and Hessian 12 0.38 s

All of the three cases listed above use the same 100 discrete points. In case 1, the default ‘finite-
differences’ method is implemented to afford the gradient information, the simulation takes 116 steps and
is 17.2 s long. In case 2, adding Jacobian only does not reduce the number of iterations but saves almost
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Figure 11: Simulation results of Example 1, 100 points.

half of the CPU time (17.2 s vs 8.7 s). In case 3, providing analytical Jacobin and Hessian highly reduces
both the number of iterations and the computational time, which drops dramatically down to 0.38 s.

The structure of Jacobian is shown in Figure 3.2(a), where the rows are constraints while the columns
are NLP decision variables. The main diagonal elements are Jacobian of collocation constraints and the
last two lines are Jacobian of boundary constraints. Figure 3.2(b) illustrates the structure of Hessian,
where both the row and column represent NLP decision variables. It can be seen that Hermite-Simpson
method has a highly sparse Jacobian and Hessian structure.
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(b) Hessian structure, 100 points.

Because only few elements in Figure 3.2 and Figure 3.2 are valuable, sparse matrix technique can be
carried out to save finite memory (A sparse matrix is a matrix filled primarily with zeros, the opposite
is refer to as dense matrix). When huge number of nodes are used to get a smooth state and control
time history, ‘out of memory’ problem can be avoided by using sparsity. Another advantage is that the
computation time will be reduced, because MATLAB will only manipulate non zero elements.
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Indirect Methods: Remarks

‣ Main Difficulties:!
• Deriving Euler-Lagrange equations and transversality 

conditions for the problem at hand!

• Nonlinearity of the dynamics!

• Solution of the DAE system itself!

• Solution of the boundary value problem on the DAE 
system!

• Lack of a plain physical meaning of Lagrange multipliers 
 

     difficulty at identifying good first guesses for Lagrange  
     multipliers (primer vector theory)



Optimal Control Problem

‣ Given a dynamical system:!

‣ Determine          which minimize the performance index:

‣ and satisfy the constraints:

‣ Two classical solution methods:!
• Indirect methods: based on reducing the optimal control 

problem to a Boundary Value Problem (BVP) !

• Direct methods: based on reducing the optimal control 
problem to a nonlinear programming problem       

u(t)



Nonlinear Programming Problem

‣ Generally constrained optimization problem 
 

Given a function!

• Minimize:!

• Subject to      equality constraints:!

!

and      inequality constraints:!
!
where      can exceed      

f(x)

f(x) = f(x1, x2, ..., xv)

J

K

ck(x) = 0, k = 1, ...,K

gj(x) � 0, j = 1, ..., J

(K � v)

J v



Unconstrained Optimization (1/6)

‣ Minimize: f(x)

‣ The necessary condition for the identification of the 
optimum is:

�x f = 0

The optimization problem in the     variables      is reduced 
to the solution of a system of      nonlinear equations!
Note: given the Hessian of     ,       , a sufficient condition is:   

v
v x

‣ The solution can be found using the Newton method 

f Hf

x Hfx > 0, �x



Newton Method (1/3)

‣ Consider the problem: 
F (x) = 0

‣ The Newton method is an iterative method based on a 
linearization of       around the current iterate!
1. Select an initial guess!
2. Consider the first order approximation of!
!

3. Find the correction:!

!
4. Update current iterate and repeat from 2 until convergence  

F

x̂

F

F (x) ⇤ F (x̂) + F �(x̂) · (x� x̂) = 0

�x = (x� x̂) = �[F ⇥(x̂)]�1 · F (x̂)



‣ Since it is based on a first 
order approximation of 
the method is “local”

 
x

F

Different first guesses might 
lead to different solutions 

F

x0,2 x1,2

∆ x

Newton Method (2/3)

‣ Graphical interpretation: 

x

F

 

x0

∆ x

x1x2

∆ x

x0,1

∆ x

x1,1 x0,3

∆ x



Newton Method (3/3)

‣ Classical methods to stabilize the iteration!

• Line Search:!
Instead of updating the current iterate using!

!
Reduce the step size using a parameter     :!

!
where      is chosen such that!

!

• Trust region:!
The direction of the computed         is slightly modified           

x̂new = x̂ + �x

�

x̂new = x̂ + � �x

||F (x̂new)|| � ||F (x̂)||
�

�x



Unconstrained Optimization (2/5)

Newton algorithm:!
‣ Select an initial guess!

‣ While stopping criterion is not satisfied!
• Find the corrections         to the current solution by solving 

the linear system!

!

where         is the Hessian of     :   !

• Update the current solution:

x

�x

Hf �x = �⇥x f

Hf = �2
x fHf f

x + �xx

‣ Solve:  �x f = 0



Unconstrained Optimization (3/5)
Important note:!
‣ Consider the following optimization problem!

• Minimize the quadratic form:!
!
!

• Necessary optimality conditions:!
!

which can be written as:

1
2
�xT Hf�x +�x fT �x

Hf �x +�x f = 0

Hf �x = �⇥x f

Finding the corrections        , i.e. the search direction, in the 
original optimization problem is equivalent to minimizing the 
previous quadratic form

�x



Unconstrained Optimization (4/5)

‣ Given the function to be minimized,        , each iteration 
of the Newton method is equivalent to:!
• Approximate      around the current solution     with a 

quadratic form!

• Find the offset,       , to the zero-gradient point of the 
quadratic form!

• Use         as a correction in the original optimization problem 

f(x)

f x

�x

�x

x

obj

x0

∆ x

x1 x2

∆ x

...



Unconstrained Optimization (5/5)

f(x1, x2) =
1
2
(x2

1 + x2
2)

example1.m

example2.m

example3.m

f(x1, x2) = 5 x1 + e�(x1+5) + x2
2



Assignment #3

§ Numerically re-compute the three unconstrained 
optimizations in the previous slide; i.e., !!!!!!!!!!!!!!

§ Advice 
§ Use Matlab built-in fminunc 
§ Code a SQP solver

f(x1, x2) =
1
2
(x2

1 + x2
2)

f(x1, x2) = 5 x1 + e�(x1+5) + x2
2



Earth-Mars 2-impulse Transfer (1/3)

‣ Optimization variables: departure date     and time of flight       t0 ttof

‣ Compute the positions of the starting and arrival planets 
through the ephemerides evaluation:  
(rE , vE) = eph(t0, Earth) (rM , vM ) = eph(t0 + ttof ,Mars),

‣ Solve the Lambert’s problem to evaluate the escape 
velocity       and the arrival one    v1 v2

‣ Objective function:
�V = �V1 + �V2



Earth-Mars 2-impulse Transfer (2/3)

‣ Minimize: f(x) = �V (x) = �V (t0, ttof )

‣ Necessary conditions for optimality: �x f = 0
��V

� t0
= 0

��V

� ttof
= 0

‣ In a generic iteration, given the current estimate  
                      , evaluate the corrections                               :

Hf �x = �⇥x f

x = {t0, ttof} �x = {�t0,�ttof}

where       is:�

⇤
�2�V
�2t0

�2�V
�t0�ttof

�2�V
�ttof �t0

�2�V
�2ttof

⇥

⌅

Hf



Earth-Mars 2-impulse Transfer (3/3)

‣ Search space:

ttof � [100, 600] day

t0 � [0, 1460] MJD2000 �= 4 years

objective function

exampleEM.m



Equality Constrained Optimization (1/5)

‣ Minimize:!

Subject to: 

f(x)

‣ The classical approach to the solution of the previous 
problem is based on the method of Lagrange multipliers 

‣ Introduce the Lagrange function: 

Method of Lagrange multipliers: 

where      is a function of the      variables      and the   
Lagrange multipliers 

L v x K
�

ck(x) = 0, k = 1, ...,K

L(x,�) = f(x)� �T · c(x)

(K � v)



Equality Constrained Optimization (2/5)

‣ The necessary conditions for the identification of the 
optimum are: 

where            is the Jacobian of  

The constrained optimization problem in the     variables  
     has been reduced to the solution of a system of 
equations in the             variables  

�� L(x,�) = c(x) = 0

C(x) c(x)

x
v

v + K

v + K (x,�)

⇤x L(x,�) = ⇤x f(x)�CT (x) · � = 0

‣ Solution by Newton method  



Equality Constrained Optimization (3/5)
Algorithm:!
‣ Select an initial guess!
‣ While stopping criterion is not satisfied!

• Find the corrections                   to the current solution by 
solving the linear system!

!
!

where !

• Update the current solution:

(�x,��)

(x,�)

(x,�) (x + �x,� + ��)

Karush-Kuhn-
Tucker (KKT)

�
HL �CT

C 0

⇥⇤
�x
��

⌅
=

⇤
�⇥x f
�c

⌅

HL = ⇥2
xx f �

K�

k=1

�k⇥2
xx ck



Equality Constrained Optimization (4/5)

Important note:!
‣ Consider the following optimization problem:!

• Minimize the quadratic form:!
!
!

• Subject to the linear constraints:

1
2
�xT HL�x + (�x f)T �x

C�x = �c

‣ Use the approach of Lagrange multipliers!
• Lagrange function:

1
2
�xT HL�x + (⇤x f)T �x� �T · (C�x + c)



Equality Constrained Optimization (5/5)

• Necessary optimality conditions:

C�x + c = 0

which can be written as:

HL�x +⇤x f �CT · � = 0

�
HL �CT

C 0

⇥⇤
�x
�

⌅
=

⇤
�⇥x f
�c

⌅
Karush-Kuhn-
Tucker (KKT)

Finding the corrections                   , i.e. the search direction, 
in the original optimization problem using the KKT system is 
equivalent to minimizing the previous quadratic form

(�x,��)



Inequality Constrained Optimization

‣ Minimize:!

Subject to: 

f(x)

gj(x) � 0, j = 1, ..., J

A possible approach!

‣ Interior Point Method: 
 

The inequality constraints are added to the objective function 
as a penalty term  

f̃(x) = f(x) +
J�

j=1

µj e�gj(x)

Solution is forced to move into the set of feasible solutions by 
means of the barrier function  e�gj



Assignment #4

§ Solve the NLP problem(*) !!!!!!!!
§ Using Matlab built-in fmincon 

§ Use SQP algorithm, quasi-Newton update, and line search 
§ Set solution tol, function tol, constraint tol to 1e-7 
§ Specify initial guess to x0 = (1, 1, 1) 
§ Make sure g2 is treated as linear constraint by fmincon 
§ Solve w/o providing gradient of obj fcn and constraints; then re-do 

by providing analytic gradients 
§ Repeat optimization from a different x0; do we find the same 

optimal solution found previously? Why?

IC-32 Optimal Control Winter 2006

Benôıt Chachuat
ME C2 401, Ph: 33844, benoit.chachuat@epfl.ch

Problem Set #3 (With Corrections)

1. Consider the following NLP problem:

min
x∈IR3

f(x) := x2
1 + x1x2 + 2x2

2 − 6x1 − 2x2 − 12x3 (1)

s.t. g1(x) := 2x2
1 + x2

2 ≤ 15

g2(x) := x1 − 2x2 − x3 ≥ −3

x1, x2, x3 ≥ 0. (2)

(a) Find an optimal solution x
⋆ to this problem using the function fmincon in MATLAB ’s Optimization

Toolbox:

◦ Make sure that the medium scale SQP algorithm, with Quasi-Newton update and line-search, is
the selected solver in fmincon;

◦ Set the solution point tolerance, function tolerance and constraint tolerance in fmincon to 10−7;

◦ Specify the initial guess as x
0 =

(

1 1 1
)T

;
◦ Make sure that the inequality constraint g2 is treated as a linear constraint by fmincon;
◦ Solve the NLP by using a finite-difference approximation of the gradients of the objective function

and constraints first. Then, resolve the problem by providing explicit expressions for the gradients
of the objective function and constraints (ask fmincon to check for the gradients before running
the optimization in this latter case);

◦ Make sure that the solver terminated successfully in each case.

Solution. A possible implementation (with analytic expressions for the gradients) is as follows:
exm1.m

1 clear all
2 options = optimset(’Display’, ’iter’, ’GradObj’, ’on’, ...
3 ’GradConstr’, ’on’, ’DerivativeCheck’, ’on’, ...

4 ’LargeScale’, ’off’, ’HessUpdate’, ’bfgs’, ...
5 ’Diagnostics’, ’on’, ’TolX’, 1e-7, ...
6 ’TolFun’, 1e-7, ’TolCon’, 1e-7,

7 ’MaxFunEval’, 100, ’MaxIter’, 100 )
8 x0 = [ 1; 1; 1 ];
9 xL = [ 0; 0; 0 ];

10 A = [ -1 2 1 ];
11 b = [ 3 ];
12

13 %Solve NLP Problem

14 [xopt, fopt, iout ] = fmincon( @exm1_fun, x0, A, b, [], [], xL, [], ...
15 @exm1_ctr, options );

1

(*) B. Chachuat, Nonlinear and Dynamic Optimization, EPFL



Direct Methods

‣ The core of the reduction of the optimal control problem to 
a nonlinear programming problem is:!
• The parameterization of all continuous variables!

• The transcription of the differential equations describing the 
dynamics, into a finite set of equality constraints 
 

Classical transcription methods:!
- Collocation !
- Multiple Shooting 

The original optimal control problem is solved within the accuracy 
of the parameterization and the transcription method used

‣ Direct methods are based on reducing the optimal control 
problem to a nonlinear programming problem 



Parameterization

‣ The parameterization is based on the discretization of the 
continuous variables on a mesh, typically settled up on the 
time domain!

• Discretize the time domain as:!

!

• Discretize the states and the controls over the previous mesh 
by defining                       and!

!
!

• Consequently, a new vector of variables can be defined:

t0 = t1 < t2 < ... < tN = tf

xk = x(tk) uk = u(tk)

u(t)

x(t) {x1,x2, ...,xN}
{u1,u2, ...,uN}

X = {tf ,x1,u1, ...,xN ,uN}



• But                                , then:                               

Transcription: Collocation (1/2)

‣ Collocation methods are based on the transcription of the 
differential equations into a finite set of defects constraints 
using a numerical integration scheme

‣ Simplest case: Euler’s scheme!

• Solution is approximated  
using a linear expansion

t

x

t i t i+1

x i

x i,e

x i+1

• which can be written in terms of defects constraints:

xi+1 = xi + ẋ(ti) · (ti+1 � ti)
= xi + ẋ(ti) · h

xi+1 = xi + h · f(xi,ui, ti)

h i = xi+1 � xi � h · f(xi,ui, ti) = 0



‣ The optimal control problem has been parameterized:!

•  and

Transcription: Collocation (2/2)
‣ Other numerical integration schemes can be applied!

• Runge-Kutta schemes:

x(t) u(t) X = {tf ,x1,u1, ...,xN ,uN}

• Minimize:
J(X)

• Dynamics:

• Minimize:

• Subject to: h (X) = 0

ciao�

ciao�

ciao�

h i = xi+1 � xi � hi

k�

j=1

�jfij = 0

Nonlinear Programming Problem



Transcription: Multiple Shooting (1/2)

‣ Time domain in discretized:
t0 = t1 < t2 < ... < tN = tf

‣ Within each time interval, splines are used to model the control 
profile                 each time interval contains              subintervals, 
where        is the number of points defining the splines

u(t) M � 1
M

‣ On a generic node, the vector of variables will be:

Xi = {xi,u1
i , ...,u

M�1
i }

•

•

•
•

•
•

• •
•

• •
u1

i�1

u2
i�1

u...
i�1

uM�1
i�1

uM�1
i

u...
i

u2
iu1

i

RK integration
RK integration

�u̇i

ti ti+1ti�1

xi�1

xi

xi+1
xc

i

�xi



Transcription: Multiple Shooting (2/2)

‣ Within a generic time interval, the splines are used to map the 
discrete values                            into continuous functions{u1

i , ...,u
M�1
i } u(t)

Numerical integration can be used to compute xc
i+1

‣ The dynamics is transcribed into a set of defects constraints:
hi = xc

i � xi = 0

‣ The vector of variables for the nonlinear programming problem is:
X = {tf ,X1, ...,XN}

•

•

•
•

•
•

• •
•

• •
u1

i�1

u2
i�1

u...
i�1

uM�1
i�1

uM�1
i

u...
i

u2
iu1

i

RK integration
RK integration

�u̇i

ti ti+1ti�1

xi�1

xi

xi+1
xc

i

�xi



Assignment #5

§ Solve Problem #1 with direct transcription and collocation

3 Example 1: A Simple Optimal Control Problem

In this section, a simple optimal control problem is solved with Hermite–Simpson method, and certain
issues are set to speed-up the computation time and improving accuracy. Consider the problem of finding
u(t) with fixed initial and final time [0, 1] to minimize the cost

J = x2(1) (68)

subject to system equations

ẋ1 = 0.5x1 + u

ẋ2 = u2 + x1u+
5

4
x2
1

(69)

and to the boundary conditions

x1(0) = 1

x2(0) = 0
(70)

with the following bound box of state and control variables

−10 ≤ x1(t) ≤ 10 (71)

−10 ≤ x2(t) ≤ 10 (72)

−10 ≤ u(t) ≤ 10 (73)

(74)

The analytical solution of this problem is

x1(t) =
cosh(1− t)

cosh(1)

u(t) =
−(tanh(1− t) + 0.5) cosh(1− t)

cosh(1)

(75)

3.1 Solution by Hermite–Simpson method

This problem is solved by using the MATLAB function fmincon with ‘interior-point’ algorithm. The
final optimized results are plotted in Figure 11, where the discrete values of x1, u as well as the analytical
continue time history of x1a, ua are plotted. In Figure 11(c) it can be seen that the error of x1 is much
lower than that of u (10−10 for x1 vs 10−5 for u). This is because the 3rd-order Hermite interpolation
polynomial is implemented to approximate the states, while linear interpolation is used to mimic the
control curve. In Figure 11(d), we integrate dynamics from the initial condition with the optimal control
history, and then we plot the error of x1. It can be seen that the error of x1 in the whole time domain
[0, 1] is below 10−5.

3.2 Improving solution accuracy and computational efficiency

Fmincon uses the ‘finite differences’ method as the default option to obtain the gradient information,
however computational efficiency can be remarkably improved by adding analytical Jacobian and Hessian.
The comparison of 3 different cases is listed in Table 3.

Table 3: Improvement with Jacobian and Hessian, 100 points.
Case Method No. of iterations CPU time
1 finite differences (default) 116 17.2 s
2 Jacobian only 116 8.7 s
3 Jacobian and Hessian 12 0.38 s

All of the three cases listed above use the same 100 discrete points. In case 1, the default ‘finite-
differences’ method is implemented to afford the gradient information, the simulation takes 116 steps and
is 17.2 s long. In case 2, adding Jacobian only does not reduce the number of iterations but saves almost
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Figure 11: Simulation results of Example 1, 100 points.

half of the CPU time (17.2 s vs 8.7 s). In case 3, providing analytical Jacobin and Hessian highly reduces
both the number of iterations and the computational time, which drops dramatically down to 0.38 s.

The structure of Jacobian is shown in Figure 3.2(a), where the rows are constraints while the columns
are NLP decision variables. The main diagonal elements are Jacobian of collocation constraints and the
last two lines are Jacobian of boundary constraints. Figure 3.2(b) illustrates the structure of Hessian,
where both the row and column represent NLP decision variables. It can be seen that Hermite-Simpson
method has a highly sparse Jacobian and Hessian structure.
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(b) Hessian structure, 100 points.

Because only few elements in Figure 3.2 and Figure 3.2 are valuable, sparse matrix technique can be
carried out to save finite memory (A sparse matrix is a matrix filled primarily with zeros, the opposite
is refer to as dense matrix). When huge number of nodes are used to get a smooth state and control
time history, ‘out of memory’ problem can be avoided by using sparsity. Another advantage is that the
computation time will be reduced, because MATLAB will only manipulate non zero elements.
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§ Use Euler method for direct 
transcription 

§ Provide analytic gradients and zero 
initial guess 

§ Compare numerical vs analytical 
solution 

§ Make trade-off between CPU time 
and solution accuracy



Low-Thrust Earth-Mars Transfer (1/2)
‣ Optimal control problem:!

• Given the dynamics of the controlled 2 body problem:

• Minimize:

r̈ = � µ

r3
· r + u

• Subject to:

v
E

r
E

v
1

r
M

v
M

v
2

r(t0) = rE(t0)
r(tf ) = rM (tf ) v(tf ) = vM (tf )

v(t0) = vE(t0)

‣ Transcription technique: 
Simple shooting 
 
 

Note: Simple shooting is 
multiple shooting when N = 1



Low-Thrust Earth-Mars Transfer (2/2)

‣ Cubic splines for         built on four pointsu(t) M = 4

‣ Earth’s ephemerides are used to set i.c. for the integration of the 
shooting method        constraints on       automatically satisfied

‣ Optimization variables:      ,      ,                   (                         )t0 tf u1, ...,u4

x0

‣ First guess: ballistic Lambert’s arc

first guess solution

dim(X) = 14



                                     ,                                    Formation reconf.

• Subject to:

Controlled Traj. in Relative Dynamics
• Given the equations of the relative dynamics:�

⌅⇤

⌅⇥

ẍ� 2nẏ � 3n2x = 0
ÿ + 2nẋ = 0
z̈ + n2z = 0

• Minimize:

r(t0) = r0

v(t0) = v0 v(tf ) = vf

r(tf ) = rf

• Note:                            ,                                    Formation depl.r(t0),v(t0) = 0 r(tf ),v(tf ) �= 0

r(t0),v(t0) �= 0 r(tf ),v(tf ) �= 0

r(t0),v(t0) �= 0                                     ,                                    Dockingr(tf ),v(tf ) = 0



Formation Flying Deployment

‣ Transcription technique: Simple shooting
‣ Cubic splines for         built on six pointsu(t) M = 6
‣ First guess: u(t) = 0

‣ Reference orbit:!

• a = 26570 km



Mars Aero-Gravity Assist (1/4)

Gravity assist Aero-Gravity Assist



Mars Aero-Gravity Assist (2/4)

‣ Dynamics:
⎧

⎪

⎪

⎪

⎪
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⎪

⎪

⎪
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⎪

⎪

⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Ṙ = V sinγ

θ̇ =
V cos γ cosψ

R cosφ

φ̇ =
V cos γ sin ψ

R

V̇ =
D

m
− G sin γ

V γ̇ =
L cosσ

m
− G cos γ +

V 2 cos γ

R

V ψ̇ =
L sinσ

m cos γ
−

V 2 tanφ cos γ cosψ

R

‣ Control parameters:!
• Bank angle!
• λ = CL /CL((L/D)max)	


• Atmospheric entry conditions

� Planar maneuver



Mars Aero-Gravity Assist (3/4)

‣ Optimal control problem 
 

Find the optimal control law, λ(t), the free atmospheric entry 
conditions and the final time        to!
• Maximize:  !

- Final heliocentric velocity 
 

V +
s

• Subject to:!
- atmospheric entry conditions 

must be consistent with entry 
conditions in planetary 
sphere of influence 
(              assigned )!

- Convective heating at 
stagnation point 
 

q̇w0
= 1.35e− 8

(

ρ

rn

)1/2

V 3.04

(

1 −

hw

H

)

V�
⇥

< q̇ max
w0

tf



Mars Aero-Gravity Assist (4/4)

‣ Transcription technique: Multiple Shooting!

•               ,                      !

• Cubic splines!

• First guess using simple  
shooting and evolutionary 
algorithms
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• Subject to:!
-  !
!

-  !

-    

• Maximize:                                  ,

GTOC II (1/3)

‣ Optimal control problem:!
• Given the dynamics of the controlled 2 body problem:

r̈ = � µ

r3
· r + u

Visit four given asteroids
mf = m0 · e

� 1
Ispg0

R tf
t0

|u|d�

r(tdep,P ) = rP (tdep,P ) v(tdep,P ) = vP (tdep,P )
v(tarr,P ) = vP (tarr,P )r(tarr,P ) = rP (tarr,P )

J = mf/(tf � t0)

⇥u⇥ � umax

tdep,Pi � tarr,Pi�1 ⇥ 90 days



GTOC II (2/3)

‣ Transcription technique: Collocation

‣ Optimization variables:!
- Four departure epochs 

(Earth and three asteroids)!
- Four transfer times!
- Control parameters 

deriving from transcription!
- State parameters deriving 

from transcription

dim(X) � 1000



GTOC II (3/3)
‣ Identified solution:

Collocation methods 
can better describe 
discontinuities



Multiple Shooting vs Collocation

‣ Both Multiple Shooting and Collocation can be considered 
robust  methods, even if highly nonlinear dynamics must 
be dealt with !

‣ Advantage of Collocation w.r.t. Multiple Shooting:!
• Better management of discontinuities of the control 

functions

‣ Disadvantage of Collocation w.r.t. Multiple Shooting:!
• Higher number of variables



Direct Methods vs Indirect Methods

‣ Main Advantages of Direct Methods:!
• No need of deriving the equations related to the 

necessary conditions for optimality!
• More versatility and easier implementation in black-box 

tools

‣ Main Disadvantage of Direct Methods:!
• Need of numerical techniques to effectively estimate 

Hessians and Jacobians

‣ Approximate methods!
• Avoid both indirect and direct!
• Suboptimal solutions



u(t), t � [ti, tf ],

ẋ = f(x,u, t),

J = �(x(tf ), tf ) +
� tf

ti

L(x,u, t) dt

x(ti) = xi �(x(tf ),u(tf ), tf ) = 0

x = (x1, x2, . . . , xn)

u = (u1, u2, . . . , um)

Definition of the original problem

minimizing

with dynamics

and boundary conditions

Note: control saturation, path constraints, variable 
final time, etc., not considered for simplicity

Find



ẋ =
�H

��
�̇ = ��H

�x

�H

�u
= 0

H(x,�,u, t) = L(x,u, t) + �T f(x,u, t)

�(tf ) =

�
��

�x
+

�
��

�x

�T

�

�

t=tf

x(ti) = xi

x(t), �(t), u(t), �

Solution of the original problem

that satisfy the necessary conditions

under �(x(tf ),u(tf ), tf ) = 0

Hamiltonian of the problem

Iterative methods used to solve (1) 
§ Convergence depends on initial guess 
§ Guessing      is not trivial (no physical meaning) 
§ Difficult to treat (algebraic-differential system) 
§ Deep knowledge of the problem required

(1)

�i



Why approximate methods

• Avoid solving problem (1) 
!

• Transform problem (1) into a simpler problem 
!

• Ease the computation of solutions 
!

• Deliver sub-optimal solutions 
!

• Examples 
§ Direct transcription [Hargraves&Paris 1987, Enright&Conway, Betts 1998] 
§ Generating function [Park&Scheeres, 2006] 
§ SDRE [Pearson 1962, Wernli&Cook 1975, Mracek&Cloutier 1998] 
§ ASRE [Cimen&Banks 2004] 
§ ...



ẋ = A(t)x + B(t)u,

J =
1
2
xT (tf )S(tf )x(tf ) +

1
2

� tf

ti

�
xT Q(t)x + uT R(t)u

�
dt,

ẋ = A(t)x + B(t)u,

�̇ = �Q(t)x�AT (t)�,

0 = R(t)u + BT (t)�, u = �R�1(t)BT (t)�

x(ti) = xi

(Time Varying) LQR

Dynamics:

Objective function:

Necessary conditions of optimality

�
ẋ
�̇

�
=

�
A(t) �B(t)R�1(t)BT (t)

�Q(t) �AT (t)

� �
x
�

�

Linear system of 2n differential equations

(2)

Initial condition:



§ If      was known, it would be possible to compute                     
through (3), and        with 

§     computed by using (3) and the final condition (3 types)

xi, �i

�xx, �x�, ��x, ���
�(ti, t) =

�
�xx(ti, t) �x�(ti, t)
��x(ti, t) ���(ti, t)

�

�
�̇xx �̇x�

�̇�x �̇��

�
=

�
A(t) �B(t)R�1(t)BT (t)

�Q(t) �AT (t)

� �
�xx �x�

��x ���

�

�xx(ti, ti) = In�n, �x�(ti, ti) = 0n�n, ��x(ti, ti) = 0n�n, ���(ti, ti) = In�n

�i

Solution of TVLQR by the STM

Exact solution of system (2):
(          initial state, costate)

are the components
of the state transition matrix (STM)

STM subject to

with

x(t) = �xx(ti, t)xi + �x�(ti, t)�i,

�(t) = ��x(ti, t)xi + ���(ti, t)�i,
(3)

x(t), �(t)
u(t) u = �R�1(t)BT (t)�

�i

 LQR solver available at http://www.astrodynamics.eu/Astrodynamics.eu/Software.html

SolveLQR.m



Solving a HCP requires inverting the          matrix

Write the first of (3) at          ,

x(tf ) = xf

ẋ = A(t)x + B(t)u,

J =
1
2

� tf

ti

�
xT Q(t)x + uT R(t)u

�
dt,

t = tf xf = �xx(ti, tf )xi + �x�(ti, tf )�i,

x(ti) = xi

�i(xi,xf , ti, tf ) = ��1
x� (ti, tf ) [xf � �xx(ti, tf )xi]�i

n� n �x�

Hard constrained problem (HCP)

§ Final state given

Statement of HCP

and solve for     ; i.e., 



J =
1
2
xT (tf )S(tf )x(tf ) +

1
2

� tf

ti

�
xT Q(t)x + uT R(t)u

�
dt

x(ti) = xi, �(tf ) = S(tf )x(tf ),

x(tf ) = �xx(ti, tf )xi + �x�(ti, tf )�i,

S(tf )x(tf ) = ��x(ti, tf )xi + ���(ti, tf )�i

�i(xi, ti, tf ) = [���(ti, tf )� S(tf )�x�(ti, tf )]�1 [S(tf )�xx(ti, tf )� ��x(ti, tf )]xi

[���(ti, tf )� S(tf )�x�(ti, tf )]

Soft constrained problem (SCP)

Solving a SCP requires inverting the          matrix

Write (3) at          ,

ẋ = A(t)x + B(t)u,

t = tf

§ Final state not given

Statement of SCP

and solve for     ; i.e., �i

n� n



Solving a SCP requires inverting the 
matrices           and

Write (3) at          , write                        , and solve for       using        (HCP) 
and for       using                               (SCP); i.e.,

�j(tf ) = S(tf )xj(tf ),xi(tf ) = xi,f ,

Statement of MCP (      given,      free)xi xj

J =
1
2
xT

j (tf )S(tf )xj(tf ) +
1
2

� tf

ti

�
xT Q(t)x + uT R(t)u

�
dt

�i = (�i,i,�i,j)T �i,i xi,f

�i,j �j(tf ) = S(tf )xj(tf )

�x�,i [���,j(ti, tf )� S(tf )�x�,j(ti, tf )]�1

Mixed constrained problem (MCP)

§ Some components 
of final state given 
(and some not)

x(ti) = xi,ẋ = A(t)x + B(t)u,

t = tf

�i,i(xi,i, xf,i, ti, tf )=��1
x�,i(ti, tf ) [xf,i � �xx,i(ti, tf )xi,i] ,

�i,j(xi,j , ti, tf )=[���,j(ti, tf )� S(tf )�x�,j(ti, tf )]�1 [S(tf )�xx,j(ti, tf )� ��x,j(ti, tf )]xi,j



such that for given arguments                    they depend on time only; i.e.,

ẋ = A(x, t)x + B(x,u, t)u,

J =
1
2
xT (tf )S(x(tf ), tf )x(tf ) +

1
2

� tf

ti

�
xT Q(x, t)x + uT R(x, t)u

�
dt

A(x, t), B(x,u, t), Q(x, t), R(x, t)

x(t), u(t)

A(x(t), t), B(x(t),u(t), t), Q(x(t), t), R(x(t), t)� A(t), B(t), Q(t), R(t)

Idea of the method
 Re-write the nonlinear problem as

ẋ = f(x,u, t),

J = �(x(tf ), tf ) +
� tf

ti

L(x,u, t) dt

original dynamics factorized dynamics

original objective function

factorized objective function

Idea: to use state-dependent matrices



Iteration i - Find                        satisfying “Problem i”

Iteration 0 - Find                        solving “Problem 0”x(0)(t), u(0)(t)

ẋ(0) = A(xi, t)x(0) + B(xi,0, t)u(0),

ẋ(i) = A(x(i�1)(t), t)x(i) + B(x(i�1)(t),u(i�1)(t), t)u(i),

x(i)(t), u(i)(t)

�
x = xi, u = 0

�

�
x = x(i�1), u = u(i�1)

�

J =
1
2
x(0)T (tf )S(xi, tf )x(0)(tf ) +

1
2

� tf

ti

�
x(0)T Q(xi, t)x(0) + u(0)T R(xi, t)u(0)

�
dt

J=
1
2
x(i)T(tf )S(x(i�1)(tf ), tf )x(i)(tf )+

1
2

� tf

ti

�
x(i)TQ(x(i�1)(t), t)x(i)+u(i)TR(x(i�1)(t), t)u(i)

�
dt

The algorithm: iterations



||x(i) � x(i�1)||� = max
t�[ti, tf ]

{|x(i)
j (t)� x(i�1)

j (t)|, j = 1, . . . , n} � �

The algorithm: convergence

Problem i = TVLQR

§ Each problem corresponds to a time-varying linear 
quadratic regulator (TVLQR) 

§ The method requires solving a series of TVLQR

§ Iterations terminate when, for given   ,�

the difference between each component of 
the state, evaluated for all times, changes by 
less than    between two successive iterations�



Numerical examples

!

§ Low-thrust dynamics in central vector field 

§ Low-thrust rendez-vous 

§ Low-thrust orbital transfer 

§ Low-thrust stationkeeping of GEO satellites



ẋ1 = x3,

ẋ2 = x4,

ẋ3 = 2x4 � (1 + x1)(1/r3 � 1) + u1,

ẋ4 = �2x3 � x2(1/r3 � 1) + u2,

x = (x1, x2, x3, x4) u = (u1, u2)

r =
�

(x1 + 1)2 + x2
2

xi = (0.2, 0.2, 0.1, 0.1)

�

���

ẋ1

ẋ2

ẋ3

ẋ4

�

��� =

�

���

0 0 1 0
0 0 0 1

f(x1, x2)(1 + 1/x1) 0 0 2
0 f(x1, x2) �2 0

�

���

� �� �
A(x)

�

���

x1

x2

x3

x4

�

��� +

�

���

0 0
0 0
1 0
0 1

�

���

� �� �
B

�
u1

u2

�

f(x1, x2) = �1/[(x1 + 1)2 + x2
2]

3/2 + 1

§ Rotating frame 
radial displacement 
transversal displacement 

§ Normalized units 
§ length unit = orbit radius 
§ time unit = 

x1

x2

1/�

Rendez-vous: statement and factorization
Dynamics

with

Factorization (dynamics)

with

State Control Initial condition

[Park&Scheeres, 2006]



J =
1
2

� tf

ti

uT u dt

xf = (0, 0, 0, 0), ti = 0, tf = 1

J =
1
2
xT (tf )Sx(tf ) +

1
2

� tf

ti

uT u dt

S = diag(25, 15, 10, 10), ti = 0, tf = 1

Q = 04�4, R = I2�2

� = 10�9

x(tf ) free

Rendez-vous: HCP and SCP definition

HCP SCP

§ Termination tolerance

Factorization (objective function)

J =
1
2
xT (tf )S(tf )x(tf ) +

1
2

� tf

ti

�
xT Q(t)x + uT R(t)u

�
dt

with

(S not defined in HCP)

(valid for all examples show)
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Rendez-vous: results (HCP)

with r =
√

(x1 + 1)2 + x22. The initial condition is xi = (0.2, 0.2, 0.1, 0.1). Two different rendez-

vous problems are solved to test the algorithm in both hard and soft constrained conditions.

Hard Constrained Rendez-Vous The HCP consists in minimizing

J =
1

2

∫ tf

ti

u
T
u dt (39)

with the final, given condition xf = (0, 0, 0, 0) and ti = 0, tf = 1.

Soft Constrained Rendez-Vous The SCP considers the following objective function

J =
1

2
x
T (tf )Sx(tf ) +

1

2

∫ tf

ti

u
T
u dt (40)

with S = diag(25, 15, 10, 10), ti = 0, and tf = 1.

The dynamics (38) is factorized into the form of (8) as

⎛

⎜
⎜
⎝

ẋ1
ẋ2
ẋ3
ẋ4

⎞

⎟
⎟
⎠

=

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 1

f(x1, x2)(1 + 1/x1) 0 0 2
0 f(x1, x2) −2 0

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

A(x)

⎛

⎜
⎜
⎝

x1
x2
x3
x4

⎞

⎟
⎟
⎠

+

⎡

⎢
⎢
⎣

0 0
0 0
1 0
0 1

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

B

(

u1
u2

)

(41)

with f(x1, x2) = −1/[(x1 +1)2 + x22]
3/2 + 1. Thus, the problem is put into the pseudo-LQR form

(8)–(9) by defining A(x) and B as in (41), and by setting in Q = 04×4 and R = I2×2.

The two problems above have been successfully solved with the ASRE method described above.

Table 1 reports the details of the HCP and SCP, whose solutions are shown in Figures 1 and 2,

respectively. In Table 1, J is the objective function associated to the optimal solution, “Iter” is

the number of iterations carried out to converge to the optimal solution, and the CPU Time (com-

putational time) refers to an Intel Core 2 Duo 2 GHz with 4 GB RAM running Mac OS X 10.6.

The termination tolerance ε in (14) is set to 10−9. (The machine specifications and the termination

tolerance are valid for the other two problems presented next, too).

The optimal solutions found replicate those already know in literature,9, 10 so indicating the ef-

fectiveness of the developed method.

Table 1. Rendez-vous solutions details

Problem J Iter CPU Time (s)

HCP 0.9586 5 0.447
SCP 0.5660 6 0.492

7

CPU Time referred to an Intel 
Core 2 Duo 2 GHz with 4 GB 
RAM running Mac OS X 10.6

x1

x
2

x3

x
4

u1

u
2
iter

J

iter
lo

g 1
0
�

xi

xf

xi
xf

SolveNL.m
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Rendez-vous: results (SCP)

with r =
√

(x1 + 1)2 + x22. The initial condition is xi = (0.2, 0.2, 0.1, 0.1). Two different rendez-

vous problems are solved to test the algorithm in both hard and soft constrained conditions.

Hard Constrained Rendez-Vous The HCP consists in minimizing

J =
1

2

∫ tf

ti

u
T
u dt (39)

with the final, given condition xf = (0, 0, 0, 0) and ti = 0, tf = 1.

Soft Constrained Rendez-Vous The SCP considers the following objective function

J =
1

2
x
T (tf )Sx(tf ) +

1

2

∫ tf

ti

u
T
u dt (40)

with S = diag(25, 15, 10, 10), ti = 0, and tf = 1.

The dynamics (38) is factorized into the form of (8) as

⎛

⎜
⎜
⎝

ẋ1
ẋ2
ẋ3
ẋ4

⎞

⎟
⎟
⎠

=

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 1

f(x1, x2)(1 + 1/x1) 0 0 2
0 f(x1, x2) −2 0

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

A(x)

⎛

⎜
⎜
⎝

x1
x2
x3
x4

⎞

⎟
⎟
⎠

+

⎡

⎢
⎢
⎣

0 0
0 0
1 0
0 1

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

B

(

u1
u2

)

(41)

with f(x1, x2) = −1/[(x1 +1)2 + x22]
3/2 + 1. Thus, the problem is put into the pseudo-LQR form

(8)–(9) by defining A(x) and B as in (41), and by setting in Q = 04×4 and R = I2×2.

The two problems above have been successfully solved with the ASRE method described above.

Table 1 reports the details of the HCP and SCP, whose solutions are shown in Figures 1 and 2,

respectively. In Table 1, J is the objective function associated to the optimal solution, “Iter” is

the number of iterations carried out to converge to the optimal solution, and the CPU Time (com-

putational time) refers to an Intel Core 2 Duo 2 GHz with 4 GB RAM running Mac OS X 10.6.

The termination tolerance ε in (14) is set to 10−9. (The machine specifications and the termination

tolerance are valid for the other two problems presented next, too).

The optimal solutions found replicate those already know in literature,9, 10 so indicating the ef-

fectiveness of the developed method.

Table 1. Rendez-vous solutions details

Problem J Iter CPU Time (s)

HCP 0.9586 5 0.447
SCP 0.5660 6 0.492

7

CPU Time referred to an Intel 
Core 2 Duo 2 GHz with 4 GB 
RAM running Mac OS X 10.6

x1

x
2

x3

x
4

u1

u
2
iter

J

iter
lo

g 1
0
�

xi xi

x(tf )

x(tf )

SolveNL.m



ẋ1 = x3,
ẋ2 = x4,
ẋ3 = x1x2

4 � 1/x2
1 + u1,

ẋ4 = �2x3x4/x1 + u2/x1.

J =
1
2

� tf

ti

uT u dt
ti = 0 tf = � xi = (1, 0, 0, 1)

xf = (1.52,�, 0,
�

1/1.52)

xf = (1.52, 1.5�, 0,
�

1/1.52)

Orbital transfer: statement

Dynamics

x = (x1, x2, x3, x4) u = (u1, u2)
State Control

Initial condition

§ Rotating frame (polar 
coordinates) 

radial distance 
angular phase 

§ Normalized units 
§ length unit = initial orbit radius 
§ time unit =         (initial orbit)

x1

x2

1/�
Objective function

Final conditions

Problem A

Problem B
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Orbital transfer: results
Factorization

Results

A(x) =

�

���

0 0 1 0
0 0 0 1

�1/x3
1 0 0x1x4

0 0 �2x4/x10

�

��� , B(x) =

�

���

0 0
0 0
1 0
0 1/x1

�

��� , Q = 04�4, R = I2�2.

The dynamics (42) and the objective function (43) are put in the form (8)–(9) by defining

A(x) =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 1

−1/x31 0 0x1x4
0 0 −2x4/x10

⎤

⎥
⎥
⎦
, B(x) =

⎡

⎢
⎢
⎣

0 0
0 0
1 0
0 1/x1

⎤

⎥
⎥
⎦
, Q = 04×4, R = I2×2. (44)

The two HPC have been solved with the ASRE method. The solutions details are reported in

Table 2 whose columns have the same meaning as in Table 1. It can be seen that more iterations and

an increased computational burden is required to solve this problem, especially for the case with

x2,f = 1.5π. The two solutions reported in Table 2 are shown in Figures 3 and 4.

Table 2. Earth–Mars transfers details

Problem J Iter CPU Time (s)

x2,f = π 0.5298 22 6.262
x2,f = 1.5π 4.8665 123 47.865
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(b) Control profile.

Figure 3. Optimal Earth–Mars transfer (x2,f = π).
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Figure 4. Optimal Earth–Mars transfer (x2,f = 1.5π).
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x = (x1, x2, x3, x4, x5, x6)
ẋ1 = x4,
ẋ2 = x5,
ẋ3 = x6,

ẋ4 = � 1
x2

1

+ x1x2
6 + x1(x5 + 1) cos2 x3 + a1(x1, x2, x3) + u1,

ẋ5 = 2x6(x5 + 1) tan x3 � 2
x4

x1
(x5 + 1) +

a2(x1, x2, x3)
x1 cos x3

+
u2

x1 cos x3
,

ẋ6 = �2
x4

x1
x6 � (x5 + 1)2 sinx3 cos x3 +

a3(x1, x2, x3)
x1

+
u3

x1
,

xi = (1, 0.05� 180/�, 0.05� 180/�, 0, 0, 0)

xf,1 = 1 xf,j free j = 2, . . . , 6 tf = �

u = (u1, u2, u3)

x1

x2

x3

Stationkeeping: statement

ti = 0

Dynamics State

Control

Initial condition

Final condition

Objective function 1/�

Q = diag(0, 1, 1, 1, 1, 1),
R = diag(1, 1, 1),
S = 100 diag(1, 1, 1, 1, 1)

a1, a2, a3

§ Rotating frame (spherical coordinates) 
radial distance 
longitude deviation 
latitude 

§ Normalized units 
§ length unit = GEO radius 
§ time unit =         (initial orbit) 

§ Reference longitude = 60 E 
§ Perturbations



§                                            free parameters 
§ Can vary in [0, 1]

a41 = � 1
x3
1

+ �1x2
6 + (�2x2

5 + 2�3x5 + 1) cos2 x3, a56 = [2 + 2(1� �1)x5] tan x3,

a45 = [(1� �2)x1x5 + 2(1� �3)] cos2 x3, a61 = � 1
2x1

sin 2x3,
a46 = (1� �1)x1x6, a64 = �2(1� �1) 1

x1
x6,

a54 = � 2
x1
� 2(1� �2) 1

x1
x5, a65 = [� 1

2x5 � 1] sin 2x3,
a55 = 2�1x5 tanx3 � 2�2

x4
x1

, a66 = �2�1
x4
x1

�1, �2, �3, �1, �2, �1

Stationkeeping: factorization

A(x) =

�

�������

033 I33

a41 0 0 0 a45 a46

0 0 0 a54 a55 a56

a61 0 0 a64 a65 a66

�

�������
, B(x) =

�

�������

033

1 0 0
0 1

r2 cos2 � 0
0 0 1

r2

�

�������

Factorization

with

[Topputo&Bernelli-Zazzera 2011]



Stationkeeping: results
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Manoeuver 

TFD TC 

TSK 

Free drift 

RESULTS 

Trajectory during 1 control cycle: 
TFD of 2.5 days  
TC of 0.5 day 

free drift 
manoeuver 
start control 
end control 

§ Control cycle 
§ Free drift (2.5 days) 
§ Maneuver (0.5 day)

1 month simulation

§ 1 year  stationkeeping simulated in [Topputo&Bernelli-Zazzera 2011]



Final Remarks

‣ All the previous numerical techniques for optimization are 
eventually based on the use of the Newton method:
• Direct methods Solution of the nonlinear system of 

equations related to the necessary 
conditions for optimality

• Indirect methods Solution of the boundary value 
problem on the DAE system

They suffer of the same disadvantages:!
• Local convergence, i.e., they tend to converge to solutions 

close to the supplied first guesses!
• Need of “good” first guesses for the solution

➡ Note: global optimization is another matter!

• Approx methods Solution of TVLQR, no need of first 
guess solution, but suboptimal
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