

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE

STARDUST

Methods and Techniques for Asteroid Deflection

Massimiliano Vasile, Mechanical & Aerospace Department University of Strathclyde

Outline

Part 1

- Basic Deflection Principles and Computational Tools
- Analytical Propagation of Low-Thrust Motion
- Trajectory Modelling

• Part 2

- Deflection Technologies
- Momentum Coupling and System Mass Consideration
- Uncertainty Quantification

PART 1

pushing the boundaries of * S T A R D U S T space research to save our future * S T A R D U S T

www.stardust2013.eu twitter.com/stardust2013eu

TARDUST

We can change the orbit of the asteroid in many different ways depending on the direction in which we push.

PUSHING THE BOUNDARIES

SPACE RESEARCH TO SAVE OUR FUTURE

V – increase or decrease the velocity of the asteroid

n – push in the direction perpendicularto the velocity in the orbit plane

h – push in the direction perpendicular to the velocity and to the orbit plane

www.stardust20 twitter.com/stardust20

PUSHING THE BOUNDARIES OF TARDUST S SPACE RESEARCH TO SAVE OUR FUTURE

What happens when we deflect?

- A deflection action generally has two consequences :
 - A change in the geometry /shape of the orbit

 For example if we push in the direction of the velocity of the asteroid we produce a delay in the arrival at the impact point.

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

What happens when we deflect?

The deflected orbit of the asteroid will be proximal to the undeflected one.

- We normally measure the deflection on a so-called impact plane on which we define the impact parameter *b**.
- When b* is smaller than the radius of the Earth we have an impact.

witter.com/stardust2013ei www.stardust201

SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

TARDUST SPACE RESEARCH TO SAVE OUR FUTURE

Computing the Deflection-Linear Model

Proximal position equations

$$\delta s_r \approx \frac{r}{a} \delta a + \frac{ae \sin f}{\eta} \delta M - a \cos f \delta e$$

$$\delta s_g \approx \frac{r}{\eta^3} (1 + e \cos f)^2 \delta M + r \delta \omega + \frac{r \sin f}{\eta^2} (2 + e \cos f) \delta e + r \cos i \delta \Omega$$

$$\delta s_h \approx r (\sin 9 \delta i - \cos 9 \sin i \delta \Omega)$$

The deflection manoeuvre generates
a change in the orbital parameters of

the asteroid.

The achieved deviation $\delta \mathbf{r} = [\delta s_r \, \delta s_q \, \delta s_h]^T$ is computed at the expected Minimum Orbit Interception Distance (MOID).

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE TARDUST

Vasile and Colombo 2008

 $n = \sqrt{1 - e^2}$

Computing the Deflection- Impulsive Deflection

Gauss' equations

$$\delta a = \frac{2a^2}{h} \left(e\sin f \,\delta v_r + \frac{p}{r} \,\delta v_g \right)$$

$$\delta e = \frac{1}{h} \left\{ p\sin f \,\delta v_r + \left[(p+r)\cos f + re \right] \delta v_g \right\}$$

$$\delta i = \frac{r\cos f}{h\sin i} \,\delta v_h$$

$$\delta \Omega = \frac{r\sin \theta}{h\sin i} \,\delta v_h$$

$$\delta \omega = \frac{1}{he} \left[-p\cos f \,\delta v_r + (p+r)\sin f \,\delta v_g \right] - \frac{r\sin \theta\cos i}{h\sin i} \,\delta v_h$$

Variation in mean anomaly

through Gauss' equations due to a variation in *a* $\delta M = \frac{b}{ahe} \Big[(p \cos f - 2re) \delta v_r - (p+r) \sin f \delta v_g \Big] + \Delta n (t_{MOID} - t_d)$

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

Vasile and Colombo 2008

Computing the Deflection- Slow-Push Deflection

 The variation in mean anomaly is modified to take into account the thrust arc:

$$\delta M = \tilde{M}_{MOID} - M_{MOID} = \left(n_e - n_i\right)t_{MOID} + n_i t_i - n_e t_e + \Delta M$$

due to a variation in a

www.stardust2013.ei witter.com/stardust2013ei

PUSHING THE BOUNDARIES OF * S T A R D U S T

through Gauss' equations

What is the most efficient way of deflecting?

Deviation achieved with δv =0.07 m/s for 1979XB (60mt impactor, 30km/s impact, 2.7 · 10¹⁰ kg Asteroid)

• 13

Deflection and minimum interception distance

B-Plane Analysis of the Deflection

www.stardust2013.eu twitter.com/stardust2013eu

|4

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

Does the manoeuvre change if we maximise b?

Vasile and Colombo 2008

SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

www.stardust2013.eu twitter.com/stardust2013eu

15

What happens if we consider 3rd body effects?

Comparison between linear and non-linear model

twitter.com/stardust2013eu

16

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

Computing the Deflection-Linear Model

Verification of the analytical expression

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

Vasile and Colombo 2008

www.stardust2013.eu witter.com/stardust2013eu

Nonlinear Proximity Position Equations

- Geometric difference between two orbits

$$\Delta \mathbf{r} = r_{A_{dev}} \Psi - \begin{bmatrix} r_{A_0} \\ 0 \\ 0 \end{bmatrix}$$

 Expressed in terms of difference of orbital elements

$$\Psi = \begin{bmatrix} \zeta \cos(\theta_{A_0} + \Delta \theta) + \sin(\theta_{A_0} + \Delta \theta) \left(\rho \sin \theta_{A_0} - \cos(i_{A_0} + \Delta i) \sin \Delta \Omega \cos \theta_{A_0}\right) \\ -\zeta \cos(\theta_{A_0} + \Delta \theta) + \sin(\theta_{A_0} + \Delta \theta) \left(\rho \sin \theta_{A_0} - \cos(i_{A_0} + \Delta i) \sin \Delta \Omega \sin \theta_{A_0}\right) \\ -\cos(\theta_{A_0} + \Delta \theta) \sin \Delta \Omega \sin i_{A_0} + \varpi \sin(\theta_{A_0} + \Delta \theta) \end{bmatrix}$$

PUSHING THE BOUNDARIES OF ***** S T A R D U S T SPACE RESEARCH TO SAVE OUR FUTURE ***** S T A R D U S T Vasile and Maddock 2010

Nonlinear Proximity Motion Equations

With the additional terms

$$\begin{aligned} \varpi &= \cos i_{A_0} \sin \left(i_{A_0} + \Delta i \right) - \cos \Delta \Omega \cos \left(i_{A_0} + \Delta i \right) \sin i_{A_0} \\ \rho &= \sin i_{A_0} \sin \left(i_{A_0} + \Delta i \right) + \cos \Delta \Omega \cos \left(i_{A_0} + \Delta i \right) \cos i_{A_0} \\ \xi &= \cos \Delta \Omega \cos \theta_{A_0} + \cos i_{A_0} \sin \Delta \Omega \sin \theta_{A_0} \end{aligned}$$

• If the Delta elements are small enough then $\Delta \rightarrow \delta$ and if one retains only the first order terms then the nonlinear equations becomes the linear equations.

PUSHING THE BOUNDARIES OF ***** S T A R D U S T

Vasile and Maddock 2010

Gauss planetary equations in Equinoctial non-singular elements:

$$\frac{da}{dt} = \frac{2}{B} \sqrt{\frac{a^3}{\mu}} \Big[(P_2 \sin L - P_1 \cos L) a_r + \Phi(L) a_\theta \Big]$$

$$\frac{dP_1}{dt} = B \sqrt{\frac{a}{\mu}} \Big[-a_r \cos L + \left(\frac{P_1 + \sin L}{\Phi(L)} + \sin L\right) a_\theta - P_2 \frac{Q_1 \cos L - Q_2 \sin L}{\Phi(L)} a_h \Big]$$

$$\frac{dP_2}{dt} = B \sqrt{\frac{a}{\mu}} \Big[a_r \sin L + \left(\frac{P_2 + \cos L}{\Phi(L)} + \cos L\right) a_\theta + P_1 \frac{Q_1 \cos L - Q_2 \sin L}{\Phi(L)} a_h \Big]$$

$$\frac{dQ_1}{dt} = \frac{B}{2} \sqrt{\frac{a}{\mu}} (1 + Q_1^2 + Q_2^2) \frac{\sin L}{\Phi(L)} a_h$$

$$\frac{dQ_2}{dt} = \frac{B}{2} \sqrt{\frac{a}{\mu}} (1 + Q_1^2 + Q_2^2) \frac{\cos L}{\Phi(L)} a_h$$

$$P_1 = e \sin(\Omega + \omega)$$

$$P_2 = e \cos(\Omega + \omega)$$

$$Q_1 = \tan \frac{i}{2} \sin \Omega$$

$$Q_2 = \tan \frac{i}{2} \cos \Omega$$

$$L = (\Omega + \omega) + \vartheta$$
PUSHING THE BOUNDARIES OF * S T A R D U S T

SPACE

www.stardust2013.eu witter.com/stardust2013eu

• Under the hypothesis of small, constant, perturbing acceleration:

$$\frac{dt}{dL} \approx \frac{r^2}{h} = \sqrt{\frac{a^3}{\mu}} \frac{B^3}{\Phi^2(L)}$$

with Gauss equations: $\frac{da}{dL} = \frac{2a^3B^2}{\mu} \left[\frac{\left(P_2 \sin L - P_1 \cos L\right)}{\Phi^2(L)} a_r + \frac{1}{\Phi(L)} a_{\theta} \right]$ $\frac{dP_1}{dL} = \frac{B^4 a^2}{\mu} \left[-a_r \frac{\cos L}{\Phi^2(L)} + \left(\frac{P_1 + \sin L}{\Phi^3(L)} + \frac{\sin L}{\Phi^2(L)} \right) a_\theta - P_2 \frac{Q_1 \cos L - Q_2 \sin L}{\Phi^3(L)} a_h \right]$ $\frac{dP_2}{dL} = \frac{B^4 a^2}{\mu} \left| \frac{\sin L}{\Phi^2(L)} a_r + \left(\frac{P_2 + \cos L}{\Phi^3(L)} + \frac{\cos L}{\Phi^2(L)} \right) a_\theta + P_1 \frac{Q_1 \cos L - Q_2 \sin L}{\Phi^3(L)} a_h \right|$ $\frac{dQ_1}{dL} = \frac{B^4 a^2}{2\mu} \left(1 + Q_1^2 + Q_2^2\right) \frac{\sin L}{\Phi^3(L)} a_h$ $\frac{dQ_2}{dL} = \frac{B^4 a^2}{2\mu} \left(1 + Q_1^2 + Q_2^2\right) \frac{\cos L}{\Phi^3(L)} a_h$

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

www.stardust2013.e twitter.com/stardust2013e

(21)

• Let's assume that the control acceleration can be expressed as:

 $a_{r} = \varepsilon \cos \alpha \cos \beta$ $a_{t} = \varepsilon \sin \alpha \cos \beta$ $a_{h} = \varepsilon \sin \beta$

- Where ε is a small number compared to the local gravity field and the two angles α and β are with respect to a local *r-t-h* reference frame.
- Let's further assume that ϵ is constant along a thrust arc.

www.stardust201 witter.com/stardust20

 Following Perturbation Theory, one can express each non-singular element and the time as an expansion in the small parameter ε:

$$a = a_0 + \varepsilon a_1 + \varepsilon^2 a_2 + \varepsilon^3 a_3 + \dots$$

$$P_1 = P_{10} + \varepsilon P_{11} + \varepsilon^2 P_{12} + \varepsilon^3 P_{13} + \dots$$

$$P_2 = P_{20} + \varepsilon P_{21} + \varepsilon^2 P_{22} + \varepsilon^3 P_{23} + \dots$$

$$Q_1 = Q_{10} + \varepsilon Q_{11} + \varepsilon^2 Q_{12} + \varepsilon^3 Q_{13} + \dots$$

$$Q_2 = Q_{20} + \varepsilon Q_{21} + \varepsilon^2 Q_{22} + \varepsilon^3 Q_{23} + \dots$$

$$t = t_{00} + \varepsilon t_1 + \varepsilon^2 t_2 + \varepsilon^3 t_3 + \dots$$

In the following only the linear terms in ε will be retained (linear theory).

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

Zuiani and Vasile 2010

www.stardust20* witter.com/stardust20

• The time equation needs a special consideration

$$\begin{aligned} \frac{dt}{dL} &\approx \frac{r^2}{h} = \sqrt{\frac{a^3}{\mu}} \frac{B^3}{\Phi^2(L)} = H(a, P, P, L) \\ \frac{dt_0}{dL} &+ \varepsilon \frac{dt_1}{dL} = H(a_0, P_{10}, P_{20}, L) + \varepsilon \left(\frac{dH}{da} \Big|_{a_0, P_{10}, P_{20}} a_1 + \frac{dH}{dP_1} \Big|_{a_0, P_{10}, P_{20}} P_{11} + \frac{dH}{dP_2} \Big|_{a_0, P_{10}, P_{20}} P_{21} \right) \\ t_0(L) &= t_{00} + \int_{L_0}^L \sqrt{\frac{a_0^3}{\mu}} \frac{B_0^3}{\Phi_0^2(L)} dL \\ t_1(L) &= \int_{L_0}^L \sqrt{\frac{a_0}{\mu}} B_0 \left\{ \frac{3B_0^2}{2} \frac{a_1(L)}{\Phi_0^2(L)} - a_0 \left[\left(\frac{3P_{10}}{\Phi_0^2(L)} + 2B_0^2 \frac{\sin L}{\Phi_0^3(L)} \right) P_{11}(L) + \right] \right] dL \end{aligned}$$

PUSHING THE BOUNDARIES OF * S T A R D U S T

Zuiani and Vasile 2010

www.stardust2013.eu witter.com/stardust2013eu

 Thus the first order approximated solution of the perturbed Keplerian motion takes the form:

$$a = a_0 + \varepsilon \frac{2B_0^2 a_0^3}{\mu} \cos \beta \Big[\Big(P_{20} I_{s2} - P_{10} I_{c2} \Big) \cos \alpha + I_{11} \sin \alpha \Big]$$

$$P_{1} = P_{10} + \varepsilon \frac{B_{0}^{4} a_{0}^{2}}{\mu} \Big[\cos \beta \Big(-I_{c2} \cos \alpha + (I_{13} P_{10} + I_{s3} + I_{s2}) \sin \alpha \Big) - P_{20} \Big(Q_{10} I_{c3} - Q_{20} I_{s3} \Big) \sin \beta \Big]$$

$$P_{2} = P_{20} + \varepsilon \frac{B_{0}^{4} a_{0}^{2}}{\mu} \Big[\cos \beta \Big(I_{s2} \cos \alpha + (I_{13} P_{20} + I_{c3} + I_{c2}) \sin \alpha \Big) + P_{10} \Big(Q_{10} I_{c3} - Q_{20} I_{s3} \Big) \sin \beta \Big]$$

$$Q_{1} = Q_{10} + \varepsilon \frac{B_{0}^{4} a_{0}^{2}}{2\mu} \Big(1 + Q_{1}^{2} + Q_{2}^{2} \Big) I_{s3} \sin \beta$$

$$Q_{2} = Q_{20} + \varepsilon \frac{B_{0}^{4} a_{0}^{2}}{2\mu} \Big(1 + Q_{1}^{2} + Q_{2}^{2} \Big) I_{c3} \sin \beta$$

with integrals:

$$I_{cn} = \int_{L_0}^{L} \frac{\cos \mathcal{L}}{\Phi_0^n(\mathcal{L})} d\mathcal{L}; \quad I_{sn} = \int_{L_0}^{L} \frac{\sin \mathcal{L}}{\Phi_0^n(\mathcal{L})} d\mathcal{L}; \quad I_{1n} = \int_{L_0}^{L} \frac{1}{\Phi_0^n(\mathcal{L})} d\mathcal{L}$$

PUSHING THE BOUNDARIES OF * S T A R D U S T

• The time equation can be further simplified :

$$t_1 = 3\sqrt{\frac{{a_0}^7}{\mu^3}} B_0^5 \cos\beta \left(\cos\alpha I_{t1} + \sin\alpha I_{t2}\right)$$

with integrals:

$$I_{t1} = \int_{L_0}^{L} \frac{1}{\Phi_0^{2}(\mathcal{L})} \left(\frac{1}{\Phi_0(\mathcal{L})} - \frac{1}{\Phi_0(L_0)} \right) d\mathcal{L} \quad I_{t2} = \int_{L_0}^{L} \frac{I_{11}(\mathcal{L})}{\Phi_0^{2}(\mathcal{L})} d\mathcal{L}$$

www.stardust2013.eu witter.com/stardust2013eu

PUSHING THE BOUNDARIES OF * S T A R D U S T

 Equivalent formulas can be derived for an inertially fixed acceleration and can be used to model the effect of solar pressure:

$$\begin{aligned} a^{ln} &= a_0 + \varepsilon^{ln} \frac{2B_0^2 a_0^3}{\mu} \cos \beta_0 \left[-(P_{10}I_{12} + I_{s2})\cos \gamma_0 + (P_{20}I_{12} + I_{c2})\sin \gamma_0 \right] \\ P_1^{ln} &= P_{10} + \varepsilon^{ln} \frac{B_0^4 a_0^2}{\mu} \Big\{ \cos \beta_0 \left[-(P_{10}I_{s3} + I_{12} + I_{2s3})\cos \gamma_0 + (P_{10}I_{c3} + I_{1c1s3})\sin \gamma_0 \right] - \sin \beta_0 P_{20} \left(Q_{10}I_{c3} - Q_{20}I_{s3} \right) \Big\} \\ P_2^{ln} &= P_{20} + \varepsilon^{ln} \frac{B_0^4 a_0^2}{\mu} \Big\{ \cos \beta_0 \left[-(P_{20}I_{s3} + I_{1c1s3})\cos \gamma_0 + (P_{20}I_{c3} + I_{12} + I_{2c3})\sin \gamma_0 \right] + \sin \beta_0 P_{10} \left(Q_{10}I_{c3} - Q_{20}I_{s3} \right) \Big\} \\ Q_1^{ln} &= Q_{10} + \varepsilon^{ln} \frac{B_0^4 a_0^2}{2\mu} \left(1 + Q_1^2 + Q_2^2 \right) \sin \beta_0 I_{s3} \\ Q_2^{ln} &= Q_{20} + \varepsilon^{ln} \frac{B_0^4 a_0^2}{2\mu} \left(1 + Q_1^2 + Q_2^2 \right) \sin \beta_0 I_{c3} \\ I_1^{ln} &= 3 \sqrt{\frac{a_0^7}{\mu^3}} B_0^5 \cos \beta_0 \left\{ -\frac{\cos \gamma_0}{P_{20}} \left[\left(I_{13} + P_{10}I_{s3} \right) - \frac{\left(1 + P_{10}\sin I_{c0} \right)}{\Phi_0 \left(I_{c0} \right)} I_{12} \right] + \sin \gamma_0 \left(I_{s3} - \frac{\sin I_0}{\Phi_0 \left(I_{c0} \right)} I_{12} \right) \right\} \end{aligned}$$

PUSHING THE BOUNDARIES OF * S T A R D U S T

Zuiani and Vasile 2011

www.stardust2013.e witter.com/stardust2013e

• The same formulas derived for a tangent-normal-binormal reference frame require the calculation of a some elliptic integrals:

$$\begin{aligned} a^{t} &= a_{0} + \varepsilon^{t} \, \frac{2B_{0}^{2} a_{0}^{3}}{\mu} \int_{L_{0}}^{L} \frac{1}{D_{0} \left(\mathcal{L}\right)} \left(\frac{2}{\Phi_{0} \left(\mathcal{L}\right)} - \frac{B_{0}^{2}}{\Phi_{0} \left(\mathcal{L}\right)^{2}} \right) d\mathcal{L} \\ P_{1}^{t} &= P_{10} + \varepsilon^{t} \, \frac{B_{0}^{4} a_{0}^{2}}{\mu} \int_{L_{0}}^{L} \frac{2(P_{10} + \sin \mathcal{L})}{D_{0} \left(\mathcal{L}\right) \Phi_{0} \left(\mathcal{L}\right)^{2}} d\mathcal{L} \\ P_{2}^{t} &= P_{20} + \varepsilon^{t} \, \frac{B_{0}^{4} a_{0}^{2}}{\mu} \int_{L_{0}}^{L} \frac{2(P_{20} + \cos \mathcal{L})}{D_{0} \left(\mathcal{L}\right) \Phi_{0} \left(\mathcal{L}\right)^{2}} d\mathcal{L} \\ D &= \sqrt{1 + P_{1} + P_{2} + 2(P_{1} \sin \mathcal{L} + P_{2} \cos \mathcal{L})} \end{aligned}$$

 The time equation, in this case, can be more conveniently integrated with a Gauss formula using 6 nodes per revolution.

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

• Accuracy of the approximation over a single revolution.

a₀-ε error analysis: relative error on Time

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE STAR D U S T

Zuiani and Vasile 2011

www.stardust2013.eu :witter.com/stardust2013eu

Error Control Over Long Spirals

- The propagation error can be controlled by updating the reference orbital elements *E*₀ every *n* orbits.
- The update simply consists in taking the value for E(L) computed at the *n*-th orbit as the new reference condition E_0 for the following *n* orbits (see Colombo et al. 2009).
- Example: LEO spiral
 - Acceleration 1e-4 m/s²
 - Rectification every n=20
 - Computation time 0.02s

PUSHING THE BOUNDARIES OF * S T A R D U S T SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

Zuiani and Vasile 2011

www.stardust20 witter.com/stardust20

Fast Propagation Over Long Spirals

- Consider an upward spiral from GTO with constant thrust and J₂.
- The acceleration is 1e-4 m/s²
- The frequency of rectification dynamically adjusted from *n*=1 to *n*=8.
- The analytical propagation required about 0.6 s while a numerical one with ode113 (Adams-Bashfort, with tolerance set at 10⁻¹³) took about 15 s

www.stardust2013. witter.com/stardust2013

31

Relative Error in the Solar System

 For asteroid deflection the level of acceleration is very small (10⁻¹²-10⁻⁸) which makes the linear expansions accurate enough to correctly predict the deflection and the miss distance.

www.stardust2013.eu twitter.com/stardust2013eu

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

Transcription into FPET

To propagate the motion,
 the trajectory is subdivided into
 Finite Perturbative Elements.

 On each element, thrust is continuous Continuous thrust

 ~10 times faster compared to numerical integration and with comparable accuracy.

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

Transcription into FPET

- A Direct Transcription Method based on Finite Perturbed Elements in Time (FPET) has been designed using the perturbative approach.
- Each transfer trajectory is divided into *n* subarcs:
- Amplitude of arc is ΔL .
- Perturbed motion propagated using analytical solution.
- Constant thrust vector in the r-t-h reference frame.
- Reference node for propagation is the midpoint of the arc.
- Motion is propagated analytically backwards and forwards by $\pm \frac{\Delta L}{2}$ from the midpoint to obtain boundary nodes (better accuracy compared to a single sided propagation)

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

The Low Thrust Two-Points Boundary Value Problem with FPET

• The FPET transcription method is used to solve the LT boundary problem:

- Decision variables for each of the n FPET:
 - Position of the reference point (5 scalars).
 - Acceleration magnitude, azimuth and elevation (3 scalars).
- 8n decision variables and 5(n+1)+1 scalar constraints.
- The problem is efficiently solved with a gradient-based local optimizer (*fmincon active-set*).

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

Earth-Mars Direct transfer (1)

- Boundary problem:
 - Departure from Earth at 5600 MJD2000.
 - Rendezvous with Mars after a transfer time of 3 years.
 - 2 complete revolutions.
- Maximum acceleration: 2.5 x10⁻⁵ m/s².
- 40 FPET.
- Initial guess for the local optimizer: constant thrust profile.

PUSHING THE BOUNDARIES OF * S T A R D U S T
Earth-Mars Direct transfer (2)

Results:

Acceleration modulus

DFPET

DITAN

400

600

ToF [days]

SPACE RESEARCH TO SAVE OUR FUTURE

800

PUSHING THE BOUNDARIES OF

Sims and Flanagan

3 x 10

E [km/s²]

- Total ΔV: 5.63 km/s.
- Relative error 10⁻³.
- Solution found with DITAN: 5.71 km/s.

2.4

2.2

1.6

1.4

0

200

400

a [km]

Hohmann Transfer: 5.49 km/s.

1.5

AV [hm/s]

1000

1200

www.stardust2013.eu witter.com/stardust2013eu

* STARDUST Zuiani and Vasile 2010

Asteroid's Prospective on the Deflection Action

- If one considers the asteroid-spacecraft system all the deflection methods can be grouped in two classes:
- Momentum change due to mass expulsion
 - Low-thrust Tug
 - Scheduled thrust, or dual engine
 - Gravity Tug
 - Mass expulsion function of the gravity attraction
 - Laser/Solar Ablation
 - Mass expulsion from ablated asteroid
 - Mass Driver
 - Asteroid mass expulsion
 - Nuclear Blast
 - Expulsion of the ablated surface of the asteroid

Asteroid's Prospective on the Deflection Action

- Momentum change due to mass acquisition or mix expulsion/acquisition:
 - Ion Beam Shepherd
 - -Flow of accelerated gas impacting the asteroid
 - Kinetic Impactor
 - Inelastic impact with mass ejection
 - Smart Clouds
 - Inelastic impact with particles
 - Light Tug
 - Light absorption and enhanced Yarkovsky

END OF PART 1

pushing the boundaries of * S T A R D U S T space research to save our future * S T A R D U S T

Reference Material

 Vasile M., Colombo C., Optimal Impact Strategies for Asteroid Deflection. Journal of Guidance, Control, and Dynamics, Vol. 31, No. 4, July–August 2008.

http://arxiv.org/ftp/arxiv/papers/1104/1104.4670.pdf

 Colombo, C., Vasile, M., and Radice, G., Semi-analytical solution for the optimal low-thrust deflection of Near-Earth Objects, Journal of Guidance, Control and Dynamics 32 (2009): 796-809.

https://pure.strath.ac.uk/portal/files/396216/strathprints014571.pdf

 Vasile M., Maddock C. On the Deflection of Asteroids with Mirrors. Celestial Mechanics and Dynamical Astronomy, May 27, 2010, Vol. 107, Issue 1, pp 265-284.

https://pure.strath.ac.uk/portal/files/2696202/Vasile_M_Pure_On_the_deflection_of_asteroi ds_with_mirrors_Jun_2010.pdf

Reference Material

Zuiani, F, Vasile, M, Palmas, A & Avanzini, G 2010, 'Direct transcription of low-thrust trajectories with finite trajectory elements' Paper presented at 61st International Astronautical Congress, IAC 2010, Prague, Czech Republic, 27/09/10 - 1/10/10, pp. Paper IAC-10.C1.7.5.

http://www.strath.ac.uk/media/faculties/engineering/advancedspaceconceptslab/re search/optimisation/IAC-10-C1.7.5.3.pdf

- Zuiani, F., Vasile, M., Avanzini, G., Palmas A. Direct transcription of low-thrust trajectories with finite trajectory elements. (2012) Acta Astronautica, 72. pp. 108-120. ISSN 0094-5765
 <u>http://www.sciencedirect.com/science/article/pii/S0094576511002852</u>
 http://strathprints.strath.ac.uk/33788/
- Zuiani F., Vasile M. Preliminary Design of Debris Removal Missions by Means of Simplified Models for Low-Thrust, Many-Revolution Transfers. International Journal of Aerospace Engineering, Volume 2012 (2012), Article ID 836250, 22 pages, doi:10.1155/2012/836250
 http://www.hindawi.com/journals/ijae/2012/836250/
- Zuiani, F, Vasile, M & Gibbings, A 2012, Evidence-based robust design of deflection actions for near Earth objects Celestial Mechanics and Dynamical Astronomy, vol 114, no. 1-2, pp. 107-136.
 http://link.springer.com/article/10.1007%2Fs10569-012-9423-1
 - Zuiani, F & Vasile, M 2012, 'Extension of finite perturbative elements for multi-revolution lowthrust transfer optimisation' Paper presented at 63rd International Astronautical Congress, Naples, Italy, 1/10/12 - 5/10/12.

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

Excursus on Space Debris

 Zuiani F., Vasile M. Preliminary Design of Debris Removal Missions by Means of Simplified Models for Low-Thrust, Many-Revolution Transfers. International Journal of Aerospace Engineering, Volume 2012 (2012), Article ID 836250, 22 pages, doi:10.1155/2012/836250

PUSHING THE BOUNDARIES OF ***** S T A R D U S T

Excursus on Space Debris

 Zuiani F., Vasile M. Preliminary Design of Debris Removal Missions by Means of Simplified Models for Low-Thrust, Many-Revolution Transfers. International Journal of Aerospace Engineering, Volume 2012 (2012), Article ID 836250, 22 pages, doi:10.1155/2012/836250

www.stardust2013.eu twitter.com/stardust2013eu

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

PART 2

pushing the boundaries of * S T A R D U S T space research to save our future * S T A R D U S T

Impulsive Deflection Techniques

- Nuclear Blast
- Kinetic Impact
- Smart Clouds

Slow-push Deflection Techniques

- Low-thrust tug
- Gravity tug
- Solar sail formation
- Enhancement by charging the asteroid
- Ion Beam Shepherd

www.stardust2013 witter.com/stardust201

Slow-push Deflection Techniques

- Laser Ablation
- Solar Sublimation
- Light Tug

www.stardust2013.eu twitter.com/stardust2013eu

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

Kinetic Impactor

- If we assume that the impacting spacecraft is on an orbit similar to the one of the asteroid but rotates, the cost of the transfer is not different from the one of LT tugs or solar sublimation.
- The mass efficiency is therefore only a function of the impacting mass:

$$\eta_m = \frac{m_d}{m_{s/c}}; \quad \delta \mathbf{v} = v_f \frac{m_d}{m_A + m_d} \Delta \mathbf{v}_{s/c}$$

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

Fragmentation Hazard

 At the level of energy required to deflect an asteroid with a kinetic impact, an asteroid could fragment unpredictably

Fig. 1 Critical specific energy *Q** for barely catastrophically disrupting asteroids with a diameter ranging from 40 m to 1 km, calculated using the work of Ryan and Melosh (R&H) [3], Housen and Holsapple [H&H (1990)] [4], and Holsapple [H (1994)][20].

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

Sanchez et al. 2009

Fragmentation Hazard

 To have an idea of the consequences of a fragmentation we can look at the expected damaged area due to an impact with the whole asteroid or with the resulting fragments after the deviation attempt.

PUSHING THE BOUNDARIES OF * S T A R D U S T

Sanchez et al. 2009

A Fractionated Kinetic Impactor Idea

- Kinetic impactors are the most mature method for asteroid deflection.
- The drawback of kinetic impactors is that the impact can fragment the asteroid.
- The idea is to impact with a cloud of particles with a total mass equivalent to a single spacecraft.

Smart Cloud vs Kinetic Impactor

- Unlike the Kinetic Impactor the cloud provides a distributed impact, more like a drag, thus no fragmentation.
- The relative velocity between the cloud and the asteroid can be very high, up to 50 km/s for highly eccentric asteroids.
- Unlike the Kinetic Impactor there is no need to pin-point the asteroid as an extended area is covered by the cloud.

The change of velocity of a $2.7 \cdot 10^{10}$ kg asteroid hit by a 500 kg cloud is 0.1 cm/s

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

Smart Cloud vs Kinetic Impactor

- Deployment of a smart dust cloud with a total mass equivalent to the propellant of a low-thrust tug.
- High elliptical orbit with steep intersection with the orbit of the asteroid.
- Orders of magnitude lower impact energy of individual particles.
- High relative velocity for deep crosser
- No need of extra energy to accelerate the cloud Normal Relative Velocity [km/s]

SPACE RESEARCH TO SAVE OUR FUTURE

	NEAs(%)	PHAs (%)	Impactors
Q<1.05AU	1%	1%	11%
Q>0.95AU	8%	22%	38%
Deep Crossers	61%	77%	53%
Low Inc. (<5)	6%	25%	38%

Smart Clouds – Deep Crossers

Asteroid Diameter=250m; Thrust Time:8.6 years; a=2AU,e=0.7

PUSHING THE BOUNDARIES OF TARDUST SPACE RESEARCH TO SAVE OUR FUTURE

Smart Clouds – Shallow Crossers

Different variants of the nuclear blast concept:

PUSHING THE BOUNDARIES OF * S T A R D U S T

Sanchez et al. 2009

• The amount of linear momentum dp_z per layer of material dz is:

$$dp_A = \rho_a v_e dz$$

PUSHING THE BOUNDARIES OF * S T A R D U S T

Sanchez et al. 2009

• Δv delivered by each type of radiation/particles releases

www.stardust2013.eu twitter.com/stardust2013eu

www.stardust2013.eu witter.com/stardust2013eu

Gravity Tractor

The effective thrust that the gravity tractor can deliver depends on the mass of the spacecraft, the exhaust angle of the plume 2ϕ , and the hovering radius *d*:

$$F_{hover} = T_n \cos\left(\arcsin\left(\frac{R_a}{d}\right) + \phi\right)$$
$$F_g = \frac{GM_a m(t)}{d^2}$$
$$F_{hover} = F_g$$

and the tugging acceleration is simply:

www.stardust2013.eu witter.com/stardust2013eu

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

Sanchez et al. 2009

Gravity Tractor

If the engines are assumed to be always on and the initial mass of the spacecraft is m_i, the mass of the spacecraft at time t can be expressed as:

$$m(t) = m_i e^{-\left(\frac{GM_a(t-t_0)}{d^2 \cos\left(\arcsin\left(\frac{R_a}{d}\right) + \phi\right)I_{sp}g_0}\right)}$$

2φ

F_{hover}

PUSHING THE BOUNDARIES OF * S T A R D U S T

Sanchez et al. 2009

Gravity Tractor

www.stardust2013.eu twitter.com/stardust2013eu

Ablation Process

- Derive the mass flow rate, per unit area, of the sublimated material
 - One dimensional energy-balance at the illuminated spot
 - Absorbed laser beam per unit area P_I, the heat losses of conduction Q_{COND} and radiation Q_{RAD} respectively and the sublimation enthalpy of the target material E_v

$$\left(E_{v} + \frac{1}{2}\overline{v}^{2} + C_{p}\left(T_{s} - T_{0}\right) + C_{v}\left(T_{s} - T_{0}\right)\right)\dot{\mu} = P_{I} - Q_{RAD} - Q_{COND}$$

Equivalent to increasing the enthalpy of sublimation by ~ 1-2 MJ/kg

Heating the gaseous ejecta from 3100-4747 K would consume ~ 2 MW/m^2 energy

[assuming a specific heat of 1361 J/kgK]

 $Q_{RAD} = \sigma_{SB} \varepsilon \left(T_{SUB}^4 - T_{amb}^4 \right)$

 $k_A = k_{A0} \left(\frac{298}{T_{SUB}}\right)^{0.5}$ $Q_{COND} = \left(T_{SUB} - T_0\right) \sqrt{\frac{C_V \rho_A k_A}{\pi t}}$

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

Ablation Process

- Ablation temperature is also related to local pressure
 - Clausius-Clapeyron equation

$$\ln \frac{p_s}{p_{ref}} = \frac{E_V}{R} \left(\frac{1}{T_{ref}} - \frac{1}{T_{SUB}} \right)$$

 T_{sub} corresponds to ρ_s T_{ref} corresponds to ρ_{ref}

Vapour pressure will increase with the temperature of the irradiated asteroid.

ABLATION MODEL

- Mass flow rate is also dependent on the local pressure at the interface between the Knudsen layer and ablated material
 - Hertz-Knudsen equation

$$\dot{\mu} = (1-k) p_s \left(\frac{1}{2\pi R_s T_{SUB}}\right)^{\frac{1}{2}}$$

The fraction of molecules that re-condense is expected to increase with the local pressure.

However the change in thrust due to the recondensation is limited. Over a wide range of k value the maximum variation in thrust is only

4 %

where *k* is the fraction of molecules that re-condense at the interphase. p_{s} is the vapor pressure and R_{s} is the specific gas constant.

www.stardust2013.eu witter.com/stardust2013eu

PUSHING THE BOUNDARIES OF ***** S T A R D U S T

ABLATION MODEL

Absorbed laser power per unit area P₁

 $\eta_{\rm L}$ efficiency of the laser system $P_{\rm IN}$ input power to the laser,

 α_{M} is the absorption at the spot

$$\alpha_{M} = (1 - \varepsilon_{\alpha} \alpha_{s})$$

Albedo α_s of the asteroid and the increment in reflectively ε_{α} at the frequency of the laser beam.

 τ_g accounts for the absorption of the laser in the rapidly expanding and absorbing plume of ejecta.

Expected, based on the experiment, to be 10-15 %

 $\boldsymbol{\tau}$ is the degradation factor caused by the re-condensed deposited ejecta

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

Contamination Process

Degradation is computed by first calculating the plume density:

$$\rho(r,\theta) = \rho * A_P \frac{d_{SPOT}^2}{\left(2r + d_{SPOT}^2\right)^2} \left[\cos\left(\frac{\pi\theta}{2\theta_{MAX}}\right)\right]^{\frac{2}{k-1}}$$

• Accumulative ejecta thickness:

$$\frac{dh}{dt} = \frac{2\overline{v}\rho}{\rho_l}\cos\psi_{vf}$$

Degradation factor:

Beer-Lambert-Bougier law

2

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

Direct Solar Concentration and the Contamination Issue

- Mirrors hovering at AEP, 800m from the target
- Distance limited by focusing capabilities
- High efficiency up to 90%

Impact parameter b (km) with contamination, variable C_r for $d_M = 62$ m

Complete condensation of the whole contamination flow hitting the mirror

Light Tug Idea

- Combined light pressure and enhanced Yarkovsky effect.
- No contamination
- High energy efficiency
- Large deployable structures
- Propellant consumption to counterbalance light pressure

 $F_{light} = (2 - \alpha_A)\sigma_M C_r \pi \frac{P_0 d_{spot}^2}{4} \left(\frac{r_{AU}}{r_S}\right)^2$ $F_{ir} = 2 \frac{\varepsilon_A \sigma T^4}{c} \frac{d_{spot}^2}{\Delta}$

Thermal balance:

 $\frac{K_A}{\rho_A c_A} \frac{\partial^2 T}{\partial x^2} = \frac{\partial T}{\partial t}$

70

PUSHING THE BOUNDARIES OF STARDUST SPACE RESEARCH TO SAVE OUR FUTURE

www.stardust2013.eu witter.com/stardust2013eu

Momentum Coupling and Deflection System Mass

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

Deflection System Mass

Given a minimum deflection δ and time *T* available to achieve it, one can define the system mass ratio as:

$$\eta_m = \frac{m_d + m_E}{m_{s/c}}$$

where $m_{\rm d}$ is the mass required to deflect the asteroid, $m_{\rm E}$ is the energy required to deflect the asteroid, $m_{\rm s/c}$ is the total mass of the spacecraft at launch.

- For example for a kinetic impactor we have:

$$\delta \mathbf{v}_A = \frac{m_d}{m_A + m_d} \Delta \mathbf{v}_{s/c}; \quad m_E = f(\Delta \mathbf{v}_{s/c})$$

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T
Momentum Coupling as a Performance Metric

 Let's take the ratio between the amount of power required to produce a deflection action P_{in} and the resulting variation of linear momentum F_d:

$$C_m = \frac{F_d}{P_{IN}}$$

- We call this coefficient the momentum coupling of the deflection action.
- This coefficient applies to all deflection methods for which the mass of the deflection system is a function of the installed power.

Momentum Coupling as a Performance Metric

 $P_{IN} = \tau \eta_P \eta_S \frac{P_{1AU} A_{SA}}{R_{4U}^2}$

RIT20: Isp 4500 s, 150 mN, 5000 W RIT10: Isp 3325, 15 mN,460 W; Green line - Hall Thruster

PUSHING THE BOUNDARIES OF * S T A R D U S T

Deflection System Mass as a Performance Metric

• Evaluated the deflection-only mass of the laser ablation system to achieved a given Δv .

$$m_{LS} = \alpha_P P_{IN} + \rho_R A_R (1 - \eta_L) \frac{P_{IN}}{\sigma \varepsilon_R T_R^4} + m_L$$

- Included:
 - Mass, emissivity and operating temperatures of the radiators;
 - The area and specific mass of the power system
 - Input power and efficiency of the laser system
- Compared to electrical propulsion, which has the same installed power of the laser and produces the same Δv.
- Included: the mass of two engines, power system, radiators, tanks and propellant

$$m_{EP} = 2.2 \frac{F_{EP}}{g_0 I_{sp}} \Delta t_{thrust} + \alpha_P P_{IN} + \rho_R A_R (1 - \eta_{EP}) \frac{P_{IN}}{\sigma \varepsilon_R T_R^4} + 2m_e$$

Low-Thrust vs. Sublimation

 Deflection mass for the same power input and delivering the same Δv.

$$C_m = \frac{F_{sub}}{P_{IN}}$$

 Low efficiency processes, such as laser ablation, can still generate a high thrust, for a low lsp:

 $\frac{2\eta P_{IN}}{g_0} = FI_{sp}$

 The mass of the last system can be modelled with a single analytic expression if one assumes that the contamination induces an exponential increase in the size of the arrays and the mass of the laser is proportional to the input power:

$$m_{LS} = \left[\alpha_{P} + \alpha_{SP}e^{-\nu_{L}\Delta t} + \frac{\rho_{R}A_{R}(1-\eta_{L})}{\sigma\varepsilon_{R}T_{R}^{4}} + \mu_{L}\right]\frac{\Delta \nu m_{A}}{\Delta tC_{m}}$$

 Likewise the mass of an Electric Propulsion system can be expressed in a similar fashion including also the propellant consumption:

$$m_{EP} = \left[2.2\frac{1}{g_0 I_{sp}} + \left(\alpha_P + \alpha_{SP} e^{-\nu_{EP}\Delta t}\right)\frac{I_{sp}}{2\eta\Delta t} + \rho_R A_R (1 - \eta_{EP})\frac{I_{sp}}{2\Delta t\eta\sigma\varepsilon_R T_R^4} + \frac{\mu_e I_{sp}}{\eta\Delta t}\right]\Delta\nu m_A$$

PUSHING THE BOUNDARIES OF * S T A R D U S T

www.stardust2013.eu twitter.com/stardust2013eu

 One can now try to compute the derivative of the mass ratios for both the laser and the electric propulsion system to get:

$$\frac{d\eta_{LS}}{d\Delta t} = \left(\nu_L \Delta t - 1\right) \alpha_{SP} e^{\nu_L \Delta t} - \left[\alpha_P + \frac{\rho_R (1 - \eta_L)}{\sigma \varepsilon_R T_R^4} + \mu_L\right] = 0$$

 The two derivatives can be put to zero to find the optimal time that minimises the mass ratio:

$$\frac{d\eta_{EP}}{d\Delta t} = \left(\nu_{EP}\Delta t - 1\right)\alpha_{SP}e^{\nu_{EP}\Delta t} - \left(\alpha_P + \frac{\rho_R(1 - \eta_{EP})}{\sigma\varepsilon_R T_R^4} + 2\mu_e\right) = 0$$

 The two expressions are essentially identical and lead to the same conclusion on the optimal system mass.

PUSHING THE BOUNDARIES OF * S T A R D U S T

 One can also check the ratio between the mass of the EP system and the mass of the laser system for different contaminations.

3.eu

www.stardust201

twitter.com/stardust2013eu

80

Uncertainty Quantification

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

www.stardust2013.eu twitter.com/stardust2013eu

Uncertainty in the Ablation Model

The thrust is a function of the rate of mass expulsion:

$$\frac{dm_{\exp}}{dt} = 2n_{sc}v_{rot}\int_{y_0}^{y_{rot}}\int_{t}^{t_{out}}H P_{in} - Q_{rad} - P_{cond} dt dy$$

• The power input due to the solar concentrator is:

$$P_{in} \left(\eta_{sys} r_r \left(1 - \zeta_A \right) S_0 \left(\frac{r_{AU}}{r_A} \right)^2 \right)$$

The Black Body radiation loss and the conduction loss are:

$$Q_{rad} = \sigma \varepsilon_{bb} T^{\prime}$$

$$Q_{cond} = (T_{subl} - T_0) \sqrt{\frac{c_A k_A \rho_A}{\pi t}}$$

The average velocity of the ejecta is given by:

$$\overline{v} = \sqrt{\frac{8I_B T_{subl}}{\pi M_{Mg2SiO_4}}}$$

Thus the sublimation thrust is computed, under the assumption of tangential thrust, as:

$$\mathbf{u}_{sub} = \frac{\Lambda \overline{\nu} \dot{m}_{exp}}{m_A} \, \hat{\mathbf{v}}_A$$

Physical properties of the asteroid are known with a degree of uncertainty

Spacecraft System Sizing

- Each spacecraft consists of:
 - A primary mirror M₁ which focuses the solar rays on the secondary mirror M₂.
 - A set of solar arrays S, which collect the radiation from the secondary mirror.
 - A semiconductor laser L.
 - A steering mirror M_d, which directs the Laser light on the target.
 - A set of radiators, which dissipate energy to maintain the Solar arrays and the Laser within acceptable limits.

Spacecraft System Sizing

- System sizing procedure:
 - The number of spacecraft n_{sc}, the primary mirror dia concentration ratio C_r are specified as design parar
 - The radiator area is computed through steady state the solar input power and the irradiated power.
 - The total mass of the spacecraft: $m_{sc} = m_{dry} + 1.1m_p$
 - The dry mass: $m_{dry} = 1.2(m_C + m_S + m_M + m_L + m_R + m_{bus})$

$$m_{L} = 1.5\rho_{L}(\eta_{L})$$

$$m_{M} = 1.25\rho_{M}(A_{d} + A_{M_{1}} + 2A_{M_{2}})$$

$$m_{S} = 1.15\rho_{S}A_{S}$$

$$m_{R} = \rho_{R}A_{R}$$

$$\eta_{SVS} = \eta_{L}\eta_{SA}\eta_{P}\varepsilon_{M}$$

These quantities are the result of assumptions on technological readiness

SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

Maximum Impact Parameter Problem

- Given a spacecraft mass m_{s/c} producing a deviation action a_d for a time ∆t=t_e-t_i
 maximise the impact parameter on the b-plane at the expected time of the impact.
- In the Hill reference frame, this is computed as:

$$\Delta \mathbf{r}_{dev} = r_{A_{dev}} \Psi \left(\mathbf{k}_{A_{dev}}, \mathbf{k}_{A_0} \right) - \begin{bmatrix} r_{A_0} \\ 0 \\ 0 \end{bmatrix} \rightarrow b^*$$

- With k_{A0} and k_{Adev} as the Keplerian elements of nominal and deflected asteroid orbits.
- To compute k_{Adev} one can use the analytical solution to the Gauss' Variational equations.

Introduction to Evidence-based Reasoning

- Evidence Theory could be viewed as a generalisation of classical Probability Theory.
- Both aleatory (stochastic) and epistemic (incomplete knowledge) uncertainty can be modelled.
- Uncertain parameters u are given as intervals U_p and a probability m is associated to each interval.

$$U_{p} = \left\{ \forall p : p \in [\underline{p}, \overline{p}] \right\}; \quad m(U_{p}) \in [0, 1]$$
$$m(U_{p1}) + m(U_{p2}) + m(U_{p1} \cup U_{p2}) = 1$$

 Different uncertain intervals can be disconnected from each other or even overlapping.

Upper and Lower Expectations

Given the proposition (in set form):

Ρ

$$A = \left\{ \mathbf{u} \mid f(\overline{\mathbf{d}}, \mathbf{u}) < v, \overline{\mathbf{d}} \in D, \mathbf{u} \in U \right\}$$

witter.com/stardust201 www.stardust20

87

STARDUST SPACE RESEARCH TO SAVE OUR FUTURE

Interval summary (1): asteroid physical characteristics

400

1500

500

600

2000 2500 3000 3500

Density [kg/m3]

Specific Heat [J/(Kg*K)]

700

- Specific heat:
- Thermal conductivity:
- Density:
- Sublimation Temperature:

 Sublimation enthalpy:

1700 1720 1740 1760 1780 1800 Sublimation Temperature [K]

Interval summary (2): technological properties

0.45

0.4

0.5

0.55

Laser efficiency

0.6 0.65

- Laser efficiency:
- Solar array efficiency:
- Mirror specific mass:

Laser specific mass:

www.stardust2013.eu twitter.com/stardust2013eu

Radiator specific mass:

SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S

Integrated System and Trajectory Optimisation

Minimum total spacecraft mass and maximum impact parameter variation:

 $\min_{\mathbf{x}\in D} \begin{bmatrix} m_{system} & -b \end{bmatrix}$

- Where **x** is given by the 3 design parameters:
 - Diameter of the primary mirror: $d_m \in [2, 20]m$
 - Number of spacecraft in the formation: $n_{sc} \in [1, 10]$
 - Concentration ratio:

 $C_r \in [1000, 3000]$

- Mixed integer-nonlinear multiobjective optimisation problem
- Solution with Multi-Agent Collaborative Search (MACS2) a memetic stochastic optimiser.

Integrated System and Trajectory Optimisation Under Uncertainty

- Collection of focal elements are mapped into a unit hypercube \overline{U}
- The maximum over the hypercube defines the worst case values of the cost functions under uncertainty.
 - "minmax", i.e. optimised worst case scenario

$$\min_{\mathbf{x}\in D} \begin{bmatrix} \max_{\mathbf{u}\in\bar{U}} m_{system} & \max_{\mathbf{u}\in\bar{U}} (-b) \end{bmatrix}$$

- The minimum over the hypercube defines the best case values of the cost functions under uncertainty.
 - "minmin", i.e. optimised best case scenario

$$\min_{\mathbf{x}\in D} \begin{bmatrix} \min_{\mathbf{u}\in\bar{U}} m_{system} & \min_{\mathbf{u}\in\bar{U}} (-b) \end{bmatrix}$$

 Minimax mixed integer nonlinear programming problems. Solution with minmax version of MACS.

Deterministic vs Robust

- Deterministististers showbjesstrikten between typitinfaizaities opfrolbeigns:
 - In then "mimmax" case, solutions with a high number of spacecraft
- "minmak" a same II primary mirror are preferred (Many spacecraft to $comp \left[msat(enfort) eim ov(veb) \right]$ $x \in D$ individual efficiency).
- "minmitre ageinmin" case, solutions with a low number of spacecraft andia [large prima)ry min(ob)] re preferred (Few spacecraft but very efficient).

Performance parameters could be

Five design points are selected for further analysis.

parameters

www.stardust2013.eu witter.com/stardust2013eu

pushing the boundaries of * S T A R D U S T space research to save our future * S T A R D U S T

93

Belief/Plausibility Curves for Single Uncertain Parameter

 The difference between v_{min} and v_{max} is some orders of magnitude larger in the case of the Sublimation Enthalpy.

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE * S T A R D U S T

94

Reference Material

- Sanchez Cuartielles, J. P., Colombo, C., <u>Vasile, M.</u>, and Radice, G., *Multicriteria comparison among several mitigation strategies for dangerous near earth objects*, Journal of Guidance, Control and Dynamics 32 (2009): 121-142.
- Sanchez J.P., <u>Vasile M.</u>, Radice G. On the Consequences of Asteroid Fragmentation during Impact Hazard Mitigation, AIAA Journal of Guidance, Control and Dynamics, 2010, vol. 33, no. 1, pp. 126-146.
- <u>Vasile M.</u>, Maddock C., *Design of a Formation of Solar Pumped Lasers for Asteroid Deflection*, Advances in Space Research, Volume 50, Issue 7, 1 October 2012, Pages 891–905.
- Zuiani, F, Vasile, M & Gibbings, A 2012, Evidence-based robust design of deflection actions for near Earth objects Celestial Mechanics and Dynamical Astronomy, vol 114, no. 1-2, pp. 107-136.

http://link.springer.com/article/10.1007%2Fs10569-012-9423-1

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE

STARDUST