Single-beam Vector Magnetometry

Stuart Ingleby
Strathclyde University

Motivation

- Low-SWAP
- FPGA demodulation
- Unshielded
- No extra coils
- Single-beam
- Double-resonance
- >50 $\mu \mathrm{T}$
- Noise-robust
- Polarimeter
- Dead-zones?
- Heading systematics?
- D $_{\text {DEMOD }} \rightarrow \mathrm{f}_{0}$

Quantum Technology Hub
Sensors and Metrology

Dead-zones

- $\mathrm{S}=0$ if $\mathrm{B}_{\text {RF }}$ parallel to B_{0} (z -axis in this case)
- $m \propto$ projection of $m_{E Q}$ onto $m_{\text {PUMP }}$

Phase Relations

- π-polarised light
- $\mathrm{B}_{\mathrm{RF}} \mathrm{z}$-axis
- $1^{\text {st }}$ and $2^{\text {nd }}$ harmonics
- Unique, invertible mapping to $\theta_{\mathrm{L}}, \theta_{\mathrm{V}}$

$$
\begin{aligned}
& \tan \varphi_{0}^{1 f}=\frac{-\bar{m} S \cos \sqrt{ } \cos \sqrt{ }}{\bar{m} S \cos 2 \sqrt{ } \sin \sqrt{ }} \\
& \tan \varphi_{0}^{2 f}=\frac{2 \bar{m} \sin \sqrt{ } \cos \sqrt{ }}{-\bar{m} \sin 2 \sqrt{ } \sin \sqrt{ }}
\end{aligned}>\tan ^{2} \sqrt{ }=1-\frac{\tan \varphi_{0}^{2 f}}{\tan \varphi_{0}^{1 f}}, ~ \tan \sqrt{ }=\frac{-\cos \sqrt{ }}{\cos 2 \sqrt{ } \tan \varphi_{0}^{1 f}}
$$

$\begin{array}{ccc}-0.5 & 0 & 0.5\end{array}$

Vector Magnetometry

Vector Magnetometry

Applications

- Focus on unshielded applications

Healthcare

- Veterinary MCG
- Clinical triage by MCG

Security

- UXO detection
- Maritime defence
- Nuclear threat reduction
- GPS-denied navigation

Geophysical

- Portable survey instruments
- Low-drift base station \& calibration devices
- Directional drilling

QuBeat: Portable veterinary MCG

- IUK feasibility study
- Peacock Technologies
- Ice Robotics
- QuSpin QTFM
- 1 pT. $\mathrm{Hz}^{-1 / 2}$
- Smart agriculture
- Mastitis diagnosis
- Automated herd monitoring

Innovate UK

QuBeat Results

- ECG agreement
- Kruuse Televet 100
- Einthoven configuration
- New information on signal amplitudes
- Broad agreement with human MCG
- $200 \mathrm{pT} / \mathrm{mV}^{*}$
- Further work on sensor locations
- Diagnostic algorithms

* Perez Alday et al, PLOS One 2016

Conclusions

- Successful proof-of-concept \rightarrow applications
- Geophysical base station
- Inclination/declination sensor
- MCG diagnostic information
- Bandwidth \& sensitivity
- $X\left(f_{R F}\right), Y\left(f_{R F}\right)$ sample time 2 s
- Need ϕ and δf simultaneously
- Self-oscillating $\rightarrow f_{\text {LARMOR }}$

- Broadened cells
- Laser power
- Elliptical polarisation
- Dead-zones
- Phase-angle relations

